Publications by authors named "Rudensky A"

Identifying cell-type-specific 3D chromatin interactions between regulatory elements can help decipher gene regulation and interpret disease-associated non-coding variants. However, achieving this resolution with current 3D genomics technologies is often infeasible given limited input cell numbers. We therefore present ChromaFold, a deep learning model that predicts 3D contact maps, including regulatory interactions, from single-cell ATAC sequencing (scATAC-seq) data alone.

View Article and Find Full Text PDF

Upon antigenic stimulation, naïve CD4+ T cells can give rise to phenotypically distinct effector T helper cells and long-lived memory T cells. We computationally reconstructed the in vivo trajectory of CD4+ T cell differentiation during a type I inflammatory immune response and identified two distinct differentiation paths for effector and precursor central memory T cells arising directly from naïve CD4+ T cells. Unexpectedly, our studies revealed heterogeneity among naïve CD4+ T cells, which are typically considered homogeneous save for their diverse T cell receptor usage.

View Article and Find Full Text PDF

The delicate balance between protective immunity against pathogens and the prevention of autoimmunity requires finely tuned generation and function of regulatory CD4 T (Treg) cells. Here, we review recent progress in the understanding of a complex set of cues, which converge on Treg cells in lymphoid and nonlymphoid organs and in tumors and how these cues modulate Treg functions. We highlight the versatility of Treg cells underlying their ability to dynamically adapt to local microenvironments and perform a wide range of functions that extend beyond the archetypal role of Treg cells in moderating adverse effects of immune response-associated inflammation and in suppressing autoimmunity.

View Article and Find Full Text PDF

The clearance of apoptotic cells, termed efferocytosis, is essential for tissue homeostasis and prevention of autoimmunity. Although past studies have elucidated local molecular signals that regulate homeostatic efferocytosis in a tissue, whether signals arising distally also regulate homeostatic efferocytosis remains elusive. Here, we show that large peritoneal macrophage (LPM) display impairs efferocytosis in broad-spectrum antibiotics (ABX)-treated, vancomycin-treated and germ-free mice in vivo, all of which have a depleted gut microbiota.

View Article and Find Full Text PDF

The skin integrates diverse signals discerned by sensory neurons and immune cells to elicit adaptive responses to a range of stresses. Considering interactions between nervous and immune systems, we questioned whether regulatory T cells (Treg cells), a T cell subset that suppresses systemic and local inflammation, can modulate activation of peripheral neurons. Short-term ablation of Treg cells increased neuronal activation to noxious stimuli independently from immunosuppressive function.

View Article and Find Full Text PDF
Article Synopsis
  • When skin gets hurt, special cells called hair follicle stem cells (HFSCs) move to help heal the wound but face tough inflammation.
  • These HFSCs activate certain proteins that help protect them and support healing, like CD80.
  • If HFSCs can’t use CD80, healing gets worse because they can’t call for help from other immune cells, which makes it harder for the skin to get better.
View Article and Find Full Text PDF

Spatially resolved gene expression profiling provides insight into tissue organization and cell-cell crosstalk; however, sequencing-based spatial transcriptomics (ST) lacks single-cell resolution. Current ST analysis methods require single-cell RNA sequencing data as a reference for rigorous interpretation of cell states, mostly do not use associated histology images and are not capable of inferring shared neighborhoods across multiple tissues. Here we present Starfysh, a computational toolbox using a deep generative model that incorporates archetypal analysis and any known cell type markers to characterize known or new tissue-specific cell states without a single-cell reference.

View Article and Find Full Text PDF

The identification of cell-type-specific 3D chromatin interactions between regulatory elements can help to decipher gene regulation and to interpret the function of disease-associated non-coding variants. However, current chromosome conformation capture (3C) technologies are unable to resolve interactions at this resolution when only small numbers of cells are available as input. We therefore present ChromaFold, a deep learning model that predicts 3D contact maps and regulatory interactions from single-cell ATAC sequencing (scATAC-seq) data alone.

View Article and Find Full Text PDF

Inflammation of non-barrier immunologically quiescent tissues is associated with a massive influx of blood-borne innate and adaptive immune cells. Cues from the latter are likely to alter and expand activated states of the resident cells. However, local communications between immigrant and resident cell types in human inflammatory disease remain poorly understood.

View Article and Find Full Text PDF

The incomplete removal of T cells that are reactive against self-proteins during their differentiation in the thymus requires mechanisms of tolerance that prevent their effector function within the periphery. A further challenge is imposed by the need to establish tolerance to the holobiont self, which comprises a highly complex community of commensal microorganisms. Here, we review recent advances in the investigation of peripheral T cell tolerance, focusing on new insights into mechanisms of tolerance to the gut microbiota, including tolerogenic antigen-presenting cell types and immunomodulatory lymphocytes, and their layered ontogeny that underlies developmental windows for establishing intestinal tolerance.

View Article and Find Full Text PDF

While regulatory T (T) cells are traditionally viewed as professional suppressors of antigen presenting cells and effector T cells in both autoimmunity and cancer, recent findings of distinct T cell functions in tissue maintenance suggest that their regulatory purview extends to a wider range of cells and is broader than previously assumed. To elucidate tumoral T cell 'connectivity' to diverse tumor-supporting accessory cell types, we explored immediate early changes in their single-cell transcriptomes upon punctual T cell depletion in experimental lung cancer and injury-induced inflammation. Before any notable T cell activation and inflammation, fibroblasts, endothelial and myeloid cells exhibited pronounced changes in their gene expression in both cancer and injury settings.

View Article and Find Full Text PDF

Some of the current and former organizers of the Cold Spring Harbor Laboratory (CSHL) 'Gene Expression and Signaling in the Immune System' (GESIS) meeting offer opinions on emerging questions in immunology, discussing the strong value of this recurring scientific meeting in the field.

View Article and Find Full Text PDF

Regulatory T (Treg) cells represent a distinct lineage of cells of the adaptive immune system indispensable for forestalling fatal autoimmune and inflammatory pathologies. The role of Treg cells as principal guardians of the immune system can be attributed to their ability to restrain all currently recognized major types of inflammatory responses through modulating the activity of a wide range of cells of the innate and adaptive immune system. This broad purview over immunity and inflammation is afforded by the multiple modes of action Treg cells exert upon their diverse molecular and cellular targets.

View Article and Find Full Text PDF

Establishing and maintaining tolerance to self-antigens or innocuous foreign antigens is vital for the preservation of organismal health. Within the thymus, medullary thymic epithelial cells (mTECs) expressing autoimmune regulator (AIRE) have a critical role in self-tolerance through deletion of autoreactive T cells and promotion of thymic regulatory T (T) cell development. Within weeks of birth, a separate wave of T cell differentiation occurs in the periphery upon exposure to antigens derived from the diet and commensal microbiota, yet the cell types responsible for the generation of peripheral T (pT) cells have not been identified.

View Article and Find Full Text PDF

FoxP3 is an essential transcription factor (TF) for immunologic homeostasis, but how it utilizes the common forkhead DNA-binding domain (DBD) to perform its unique function remains poorly understood. We here demonstrated that unlike other known forkhead TFs, FoxP3 formed a head-to-head dimer using a unique linker (Runx1-binding region [RBR]) preceding the forkhead domain. Head-to-head dimerization conferred distinct DNA-binding specificity and created a docking site for the cofactor Runx1.

View Article and Find Full Text PDF

Long-term senescent cells exhibit a secretome termed the senescence-associated secretory phenotype (SASP). Although the mechanisms of SASP factor induction have been intensively studied, the release mechanism and how SASP factors influence tumorigenesis in the biological context remain unclear. In this study, using a mouse model of obesity-induced hepatocellular carcinoma (HCC), we identified the release mechanism of SASP factors, which include interleukin-1β (IL-1β)- and IL-1β-dependent IL-33, from senescent hepatic stellate cells (HSCs) via gasdermin D (GSDMD) amino-terminal-mediated pore.

View Article and Find Full Text PDF

Regulatory T (Treg) cells expressing the transcription factor Foxp3 are an essential suppressive T cell lineage of dual origin: Foxp3 induction in thymocytes and mature CD4 T cells gives rise to thymic (tTreg) and peripheral (pTreg) Treg cells, respectively. While tTreg cells suppress autoimmunity, pTreg cells enforce tolerance to food and commensal microbiota. However, the role of Foxp3 in pTreg cells and the mechanisms supporting their differentiation remain poorly understood.

View Article and Find Full Text PDF

Regulatory T (Treg) cells represent a specialized lineage of suppressive CD4+ T cells whose functionality is critically dependent on their ability to migrate to and dwell in the proximity of cells they control. Here we show that continuous expression of the chemokine receptor CXCR4 in Treg cells is required for their ability to accumulate in the bone marrow (BM). Induced CXCR4 ablation in Treg cells led to their rapid depletion and consequent increase in mature B cells, foremost the B-1 subset, observed exclusively in the BM without detectable changes in plasma cells or hematopoietic stem cells or any signs of systemic or local immune activation elsewhere.

View Article and Find Full Text PDF

Innate lymphocytes are integral components of the cellular immune system that can coordinate host defense against a multitude of challenges and trigger immunopathology when dysregulated. Natural killer (NK) cells and innate lymphoid cells (ILCs) are innate immune effectors postulated to functionally mirror conventional cytotoxic T lymphocytes and helper T cells, respectively. Here, we showed that the cytolytic molecule granzyme C was expressed in cells with the phenotype of type 1 ILCs (ILC1s) in mouse liver and salivary gland.

View Article and Find Full Text PDF

T cell activation, a key early event in the adaptive immune response, is subject to elaborate transcriptional control. In the present study, we examined how the activities of eight major transcription factor (TF) families are integrated to shape the epigenome of naive and activated CD4 and CD8 T cells. By leveraging extensive polymorphisms in evolutionarily divergent mice, we identified the 'heavy lifters' positively influencing chromatin accessibility.

View Article and Find Full Text PDF

Germinal centers (GCs) are the site of immunoglobulin somatic hypermutation and affinity maturation, processes essential to an effective antibody response. The formation of GCs has been studied in detail, but less is known about what leads to their regression and eventual termination, factors that ultimately limit the extent to which antibodies mature within a single reaction. We show that contraction of immunization-induced GCs is immediately preceded by an acute surge in GC-resident Foxp3 T cells, attributed at least partly to up-regulation of the transcription factor Foxp3 by T follicular helper (T) cells.

View Article and Find Full Text PDF

The immunosuppressive function of regulatory T (T) cells is dependent on continuous expression of the transcription factor Foxp3. Foxp3 loss of function or induced ablation of T cells results in a fatal autoimmune disease featuring all known types of inflammatory responses with every manifestation stemming from T cell paucity, highlighting a vital function of T cells in preventing fatal autoimmune inflammation. However, a major question remains whether T cells can persist and effectively exert their function in a disease state, where a broad spectrum of inflammatory mediators can either inactivate T cells or render innate and adaptive pro-inflammatory effector cells insensitive to suppression.

View Article and Find Full Text PDF

Surface epithelia provide a critical barrier to the outside world. Upon a barrier breach, resident epithelial and immune cells coordinate efforts to control infections and heal tissue damage. Inflammation can etch lasting marks within tissues, altering features such as scope and quality of future responses.

View Article and Find Full Text PDF
Article Synopsis
  • Some T cells in our body can sometimes get activated by our own body's stuff, which can lead to problems like autoimmune diseases.
  • Scientists looked at how these self-activated T cells are controlled in places like lymph nodes using special imaging and modeling techniques.
  • They found that when these T cells are activated, they produce a substance called IL-2 that helps other T cells keep things in check, but if there aren't enough of these controlling T cells, the self-activated ones can grow too much, causing issues.
View Article and Find Full Text PDF