Publications by authors named "Ruchika Verma"

Intratumor heterogeneity (ITH) presents challenges for precision oncology, but methods for its spatial quantification, scalable at population levels, do not exist. Based on previous work showing that admixture of PAM50 subtype can be measured from bulk tissue using transcriptomic data, we trained a deep neural network (DNN) to quantify subtype ITH in Luminal A (LumA) breast cancer from routinely-stained whole slide images. We tested the hypothesis that subtype admixture detected in images was associated with tumor aggressiveness and adverse outcome.

View Article and Find Full Text PDF
Article Synopsis
  • Cultured meat offers a sustainable alternative to traditional meat by potentially lowering environmental, ethical, and health issues, but faces significant technological hurdles that require extensive research.
  • Machine learning can enhance cultured meat production by optimizing experiments, predicting outcomes, and conserving research resources, though its application in this field is still developing.
  • The review identifies key aspects of cultured meat research, including cell line development, culture media design, image analysis, and optimization processes, while also providing a dataset survey to guide future interdisciplinary research opportunities.
View Article and Find Full Text PDF

High-grade glioma (HGG) is an aggressive brain tumor. Sex is an important factor that differentially affects survival outcomes in HGG. We used an end-to-end deep learning approach on hematoxylin and eosin (H&E) scans to (i) identify sex-specific histopathological attributes of the tumor microenvironment (TME), and (ii) create sex-specific risk profiles to prognosticate overall survival.

View Article and Find Full Text PDF

Purpose: Personalized medicine attempts to predict survival time for each patient, based on their individual tumor molecular profile. We investigate whether our survival learner in combination with a dimension reduction method can produce useful survival estimates for a variety of patients with cancer.

Experimental Design: This article provides a method that learns a model for predicting the survival time for individual patients with cancer from the PanCancer Atlas: given the (16,335 dimensional) gene expression profiles from 10,173 patients, each having one of 33 cancers, this method uses unsupervised nonnegative matrix factorization (NMF) to reexpress the gene expression data for each patient in terms of 100 learned NMF factors.

View Article and Find Full Text PDF

An Individual Survival Distribution (ISD) models a patient's personalized survival probability at all future time points. Previously, ISD models have been shown to produce accurate and personalized survival estimates (for example, time to relapse or to death) in several clinical applications. However, off-the-shelf neural-network-based ISD models are usually opaque models due to their limited support for meaningful feature selection and uncertainty estimation, which hinders their wide clinical adoption.

View Article and Find Full Text PDF

Introduction: Medulloblastoma (MB) is a malignant, heterogenous brain tumor. Advances in molecular profiling have led to identifying four molecular subgroups of MB (WNT, SHH, Group 3, Group 4), each with distinct clinical behaviors. We hypothesize that (1) aggressive MB tumors, growing heterogeneously, induce pronounced local structural deformations in the surrounding parenchyma, and (b) these local deformations as captured on Gadolinium (Gd)-enhanced-T1w MRI are independently associated with molecular subgroups, as well as overall survival in MB patients.

View Article and Find Full Text PDF
Article Synopsis
  • Machine learning can work well, but it often struggles to make accurate predictions on new data, which is called out-of-sample generalizability.
  • To solve this problem, researchers are using a method called Federated ML that allows computers to share information about how well they're learning without actually sharing the data itself.
  • In a big study with 71 locations around the world, scientists created a model to help detect brain tumors more accurately, showing a significant improvement compared to older methods and hoping to help with rare illnesses and data sharing in healthcare.
View Article and Find Full Text PDF

We had released MoNuSAC2020 as one of the largest publicly available, manually annotated, curated, multi-class, and multi-instance medical image segmentation datasets. Based on this dataset, we had organized a challenge at the International Symposium on Biomedical Imaging (ISBI) 2020. Along with the challenge participants, we had published an article summarizing the results and findings of the challenge (Verma et al.

View Article and Find Full Text PDF

We assessed the utility of quantitative features of colon cancer nuclei, extracted from digitized hematoxylin and eosin-stained whole slide images (WSIs), to distinguish between stage II and stage IV colon cancers. Our discovery cohort comprised 100 stage II and stage IV colon cancer cases sourced from the University Hospitals Cleveland Medical Center (UHCMC). We performed initial (independent) model validation on 51 (143) stage II and 79 (54) stage IV colon cancer cases from UHCMC (The Cancer Genome Atlas's Colon Adenocarcinoma, TCGA-COAD, cohort).

View Article and Find Full Text PDF

Detecting various types of cells in and around the tumor matrix holds a special significance in characterizing the tumor micro-environment for cancer prognostication and research. Automating the tasks of detecting, segmenting, and classifying nuclei can free up the pathologists' time for higher value tasks and reduce errors due to fatigue and subjectivity. To encourage the computer vision research community to develop and test algorithms for these tasks, we prepared a large and diverse dataset of nucleus boundary annotations and class labels.

View Article and Find Full Text PDF

Purpose: To identify radiomic features extracted from the tumor habitat on routine MR images that are prognostic for progression-free survival (PFS) and to assess their morphologic basis with corresponding histopathologic attributes in glioblastoma (GBM).

Materials And Methods: In this retrospective study, 156 pretreatment GBM MR images (gadolinium-enhanced T1-weighted, T2-weighted, and fluid-attenuated inversion recovery [FLAIR] images) were curated. Of these 156 images, 122 were used for training (90 from The Cancer Imaging Archive and 32 from the Cleveland Clinic, acquired between December 1, 2011, and May 1, 2018) and 34 were used for validation.

View Article and Find Full Text PDF

Purpose: There is an increasing availability of large imaging cohorts [such as through The Cancer Imaging Archive (TCIA)] for computational model development and imaging research. To ensure development of generalizable computerized models, there is a need to quickly determine relative quality differences in these cohorts, especially when considering MRI datasets which can exhibit wide variations in image appearance. The purpose of this study is to present a quantitative quality control tool, MRQy, to help interrogate MR imaging datasets for: (a) site- or scanner-specific variations in image resolution or image contrast, and (b) imaging artifacts such as noise or inhomogeneity; which need correction prior to model development.

View Article and Find Full Text PDF

Purpose: The availability of radiographic magnetic resonance imaging (MRI) scans for the Ivy Glioblastoma Atlas Project (Ivy GAP) has opened up opportunities for development of radiomic markers for prognostic/predictive applications in glioblastoma (GBM). In this work, we address two critical challenges with regard to developing robust radiomic approaches: (a) the lack of availability of reliable segmentation labels for glioblastoma tumor sub-compartments (i.e.

View Article and Find Full Text PDF

Purpose: To (i) create a survival risk score using radiomic features from the tumor habitat on routine MRI to predict progression-free survival (PFS) in glioblastoma and (ii) obtain a biological basis for these prognostic radiomic features, by studying their radiogenomic associations with molecular signaling pathways.

Experimental Design: Two hundred three patients with pretreatment Gd-T1w, T2w, T2w-FLAIR MRI were obtained from 3 cohorts: The Cancer Imaging Archive (TCIA; = 130), Ivy GAP ( = 32), and Cleveland Clinic ( = 41). Gene-expression profiles of corresponding patients were obtained for TCIA cohort.

View Article and Find Full Text PDF

Generalized nucleus segmentation techniques can contribute greatly to reducing the time to develop and validate visual biomarkers for new digital pathology datasets. We summarize the results of MoNuSeg 2018 Challenge whose objective was to develop generalizable nuclei segmentation techniques in digital pathology. The challenge was an official satellite event of the MICCAI 2018 conference in which 32 teams with more than 80 participants from geographically diverse institutes participated.

View Article and Find Full Text PDF

Nuclear segmentation in digital microscopic tissue images can enable extraction of high-quality features for nuclear morphometrics and other analysis in computational pathology. Conventional image processing techniques, such as Otsu thresholding and watershed segmentation, do not work effectively on challenging cases, such as chromatin-sparse and crowded nuclei. In contrast, machine learning-based segmentation can generalize across various nuclear appearances.

View Article and Find Full Text PDF