Publications by authors named "Ruchi Masand"

The maintenance of cellular function relies on the close regulation of adenosine triphosphate (ATP) synthesis and hydrolysis. ATP hydrolysis by mitochondrial ATP Synthase (CV) is induced by loss of proton motive force and inhibited by the mitochondrial protein ATPase inhibitor (ATPIF1). The extent of CV hydrolytic activity and its impact on cellular energetics remains unknown due to the lack of selective hydrolysis inhibitors of CV.

View Article and Find Full Text PDF

Cold-induced thermogenesis in endotherms demands adaptive thermogenesis fueled by mitochondrial respiration and Ucp1-mediated uncoupling in multilocular brown adipocytes (BAs). However, dietary regulation of thermogenesis in BAs isn't fully understood. Here, we describe that the deficiency of Leucine-rich pentatricopeptide repeat containing-protein (Lrpprc) in BAs reduces mtDNA-encoded ETC gene expression, causes ETC proteome imbalance, and abolishes the mitochondria-fueled thermogenesis.

View Article and Find Full Text PDF

Lysosomes and mitochondria are both crucial cellular organelles for metabolic homeostasis and organism health. However, mechanisms linking their metabolic activities to promote organism longevity remain poorly understood. We discovered that the induction of specific lysosomal signaling mediated by a LIPL-4 lysosomal acid lipase and its lipid chaperone LBP-8 increases mitochondrial ß-oxidation to reduce lipid storage and promote longevity in Caenorhabditis elegans.

View Article and Find Full Text PDF

Brown adipose tissue (BAT) thermogenesis is critical for thermoregulation and contributes to total energy expenditure. However, whether BAT has non-thermogenic functions is largely unknown. Here, we describe that BAT-specific liver kinase b1 knockout (Lkb1) mice exhibited impaired BAT mitochondrial respiration and thermogenesis but reduced adiposity and liver triglyceride accumulation under high-fat-diet feeding at room temperature.

View Article and Find Full Text PDF

Deficiency of the TCA cycle enzyme Succinyl-CoA Synthetase/Ligase (SCS), due to pathogenic variants in subunits encoded by SUCLG1 and SUCLA2, causes mitochondrial encephalomyopathy, methylmalonic acidemia, and mitochondrial DNA (mtDNA) depletion. In this study, we report an 11year old patient who presented with truncal ataxia, chorea, hypotonia, bilateral sensorineural hearing loss and preserved cognition. Whole exome sequencing identified a heterozygous known pathogenic variant and a heterozygous novel missense variant of uncertain clinical significance (VUS) in SUCLG1.

View Article and Find Full Text PDF

Defects in the tricarboxylic acid cycle (TCA) are associated with a spectrum of neurological phenotypes that are often difficult to diagnose and manage. Whole-exome sequencing (WES) led to a rapid expansion of diagnostic capabilities in such disorders and facilitated a better understanding of disease pathogenesis, although functional characterization remains a bottleneck to the interpretation of potential pathological variants. We report a 2-year-old boy of Afro-Caribbean ancestry, who presented with neuromuscular symptoms without significant abnormalities on routine diagnostic evaluation.

View Article and Find Full Text PDF

Duplications involving portions of the long arm of the X-chromosome can be associated with mental retardation, short stature, microcephaly, panhypopituitarism, and a wide range of physical findings. Less common are duplications in distal Xq associated with hemihyperplasia and digital anomalies. We report on a 4-year-old female with hemihyperplasia, syndactyly of fingers and toes, bilateral 5th finger clinodactyly, short stature, developmental delay, and microcephaly associated with an 11.

View Article and Find Full Text PDF