The interferon signaling pathway is critical for host defense by serving diverse functions in both innate and adaptive immune responses. Here, we show that type I gamma phosphatidylinositol phosphate 5-kinase i5 (PIPKIγi5), an enzyme that synthesizes phosphatidylinositol-4,5-bisphosphate (PI4,5P), controls the sensitivity to interferon in both human and mouse cells. PIPKIγi5 directly binds to the interferon-gamma (IFN-γ) downstream effector signal transducer and activator of transcription 1 (STAT1), which suppresses the STAT1 dimerization, IFN-γ-induced STAT1 nuclear translocation, and transcription of IFN-γ-responsive genes.
View Article and Find Full Text PDFIn response to different immune challenges, immune cells migrate to specific sites in the body, where they perform their functions such as defense against infection, inflammation regulation, antigen recognition, and immune surveillance. Therefore, the migration ability is a fundamental aspect of immune cell function. Phosphoinositide signaling plays critical roles in modulating immune cell migration by controlling cell polarization, cytoskeletal rearrangement, protrusion formation, and uropod contraction.
View Article and Find Full Text PDFTelomerase activation is one of the key mechanisms that allow cells to bypass replicative senescence. Telomerase activity is primarily regulated at the level of transcription of its catalytic unit- hTERT. Prostate cancer (PCa), akin to other cancers, is characterized by high telomerase activity.
View Article and Find Full Text PDFWe report embryo-induced alterations occurring in endometrial stromal cells (ESCs) during the embryo-attachment stage in bonnet monkeys (Macaca radiata). Laser micro-dissected ESCs obtained from pregnant and non-pregnant animals were compared for levels of selected proliferation and decidualization-associated factors by analysis with quantitative real-time polymerase chain reaction or immunohistochemistry. Stromal cells exhibited extensive cellular proliferation, as indicated by cellular compaction and significantly higher (P < 0.
View Article and Find Full Text PDFBackground: Endometrium acquires structural and functional competence for embryo implantation only during the receptive phase of menstrual cycle in fertile women. Sizeable data are available to indicate that this ability is acquired by modulation in the expression of several genes/gene products. However, there exists little consensus on the identity, number of expressed/not-detected genes and their pattern of expression (up or down regulation).
View Article and Find Full Text PDF