Recently, mRNA has gained a lot of attention in the field of vaccines, gene therapy, and protein replacement therapies. Herein, we are demonstrating a comprehensive approach to designing, cloning, and characterizing an antigenic cassette for the development of mRNA vaccine for COVID-19. The gene encoding the antigenic spike protein of the SARS-CoV-2 Omicron variant (B.
View Article and Find Full Text PDFEmergence of SARS-CoV-2 Omicron variant has presented a significant challenge to global health, demanding rapid development of mRNA-based vaccines. The mRNA-guided vaccine platforms offer various advantages over traditional vaccine platforms. The mRNA by nature is a short-lived molecule that guides the cells to manufacture antigenic proteins.
View Article and Find Full Text PDFThe lack of sensitive and specific biomarkers for ovarian cancer leads to late stage diagnosis of the disease in a majority of the cases. Mutation accumulation is the basis for cancer progression, thus identifying mutations is an important step in the disease diagnosis. In the present study, a comprehensive analysis of fifteen Next Generation Sequencing samples from thirteen ovarian cancer cell lines was carried out for the identification of new mutations.
View Article and Find Full Text PDFIdentifying differentially expressed genes and co-expression modules lead to novel biomarkers. GO, pathway enrichment, network, and tumor stage analysis of 318 ovarian cancer samples from TCGA, categorised into primary and recurrent, pre-menopause and post-menopause, and early and late stage tumors was performed. Upregulated and downregulated genes in primary vs recurrent, early stage vs late-stage and pre-menopause vs post-menopause tumors were 84 and 62, 84 and 35, and 88 and 14, respectively.
View Article and Find Full Text PDFMajor cause of mortality in ovarian cancer can be attributed to a lack of specific and sensitive biomarkers for diagnosis and prognosis of the disease. Uncovering the mutations in genes involved in crucial oncogenic pathways is a key step in discovery and development of novel biomarkers. Whole exome sequencing (WES) is a powerful method for the detection of cancer driver mutations.
View Article and Find Full Text PDF