RNA splicing, and variations in this process referred to as alternative splicing, are critical aspects of gene regulation in eukaryotes. From environmental responses in plants to being a primary link between genetic variation and disease in humans, splicing differences confer extensive phenotypic changes across diverse organisms (1-3). Regulation of splicing occurs through differential selection of splice sites in a splicing reaction, which results in variation in the abundance of isoforms and/or splicing events.
View Article and Find Full Text PDFBiochem Biophys Res Commun
June 2020
Glucose mediated insulin biosynthesis is tightly regulated and shared between insulin granule proteins such as its processing enzymes, prohormone convertases, PC1/3 and PC2. However, the molecular players involved in the co-ordinated translation remain elusive. The trans-acting factors like PABP (Poly A Binding Protein) and PDI (Protein Disulphide Isomerize) binds to a conserved sequence in the 5'UTR of insulin mRNA and regulates its translation.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
April 2018
Type 2 diabetes mellitus (T2DM) is no more a lifestyle disease of developed countries. It has emerged as a major health problem worldwide including developing countries. However, how diabetes could be detected at an early stage (prediabetes) to prevent the progression of disease is still unclear.
View Article and Find Full Text PDFUnderstanding the regulation of insulin biosynthesis is important as it plays a central role in glucose metabolism. The mouse insulin gene2 (Ins2) has two splice variants; long (Ins2L) and short (Ins2S), that differ only in their 5'UTR sequence and Ins2S is the major transcript which translate more efficiently as compared to Ins2L. Here, we show that cellular factors bind preferentially to the Ins2L 5'UTR, and that PABP and HuD can bind to Ins2 splice variants and regulate its translation.
View Article and Find Full Text PDFInsulin maintains glucose homeostasis by stimulating glucose uptake from extracellular environment to adipose and muscle tissue through glucose transporter (GLUT4). Insulin resistance plays a significant role in pathologies associated with type2 diabetes. It has been previously shown that hyperinsulinemia can lead to insulin resistance.
View Article and Find Full Text PDF