Nothapodytes nimmoniana belongs to family Icacinaceae and is a major source of compound Camptothecin. The global demand for Camptothecin has caused large-scale exploitation of N. nimmoniana from its wild habitat in Western Ghats of India, thereby making it vulnerable.
View Article and Find Full Text PDFis a medicinally important plant producing anticancer monoterpene indole alkaloid (MIA), camptothecin (CPT). The CPT is synthesised through the strictosidine intermediate following the MIA pathway; however, transcriptional regulation of CPT pathway is still elusive in . Biosynthesis of MIA is regulated by various transcription factors (TFs) belonging to AP2/ERF, bHLH, MYB, and WRKY families.
View Article and Find Full Text PDFNovel cytochrome P450s, CYP81B140 and CYP81B141 from Plumbago zeylanica were functionally characterized to understand their involvement in polyketide plumbagin biosynthesis. Further, we propose 3-methyl-1-8-naphthalenediol and isoshinanolone as intermediates for plumbagin biosynthesis. Plumbago zeylanica L.
View Article and Find Full Text PDFPlants produce a range of secondary metabolites primarily as defence molecules. A plant has to invest considerable energy to synthesise alkaloids, and sometimes they are even toxic to themselves. Hence, the biosynthesis of alkaloids is a spatiotemporally regulated process under quantitative feedback regulation which is accomplished by the signal reception, transcriptional/translational regulation, transport, storage and accumulation.
View Article and Find Full Text PDFThe plant is an important source of camptothecin (CPT), an anticancer compound widely used in the treatment of colorectal, lung, and ovarian cancers. CPT is biosynthesized by the combination of the seco-iridoid and indole pathways in plants. The majority of the biosynthetic steps and associated genes still remain unknown.
View Article and Find Full Text PDFIn plants, geranylgeranyl diphosphate (GGPP, C ) synthesized by GGPP synthase (GGPPS) serves as precursor for vital metabolic branches including specialized metabolites. Here, we report the characterization of a GGPPS (CrGGPPS2) from the Madagascar periwinkle (Catharanthus roseus) and demonstrate its role in monoterpene (C )-indole alkaloids (MIA) biosynthesis. The expression of CrGGPPS2 was not induced in response to methyl jasmonate (MeJA), and was similar to the gene encoding type-I protein geranylgeranyltransferase_β subunit (CrPGGT-I_β), which modulates MIA formation in C.
View Article and Find Full Text PDF