We developed an organ-on-a-chip (OOC) based on precision-cut liver slices to assess liver function in real-time, both in health and disease, in a controlled and noninvasive manner. We achieved this by integrating fiber-optic-based oxygen sensors before and after the microchamber in which a liver slice was incubated under flow, to measure oxygen concentrations in the medium in real time. We first demonstrated that the basal oxygen consumption rate (OCR) of liver slices is a reliable indicator of liver slice viability.
View Article and Find Full Text PDFTo mimic (human) cholestasis in vitro requires multiple triggers to establish a diseased phenotype. However, this is currently not simulated by existing in vitro models. Therefore, there is a high need for multicellular systems similar to the human physiology.
View Article and Find Full Text PDF