Publications by authors named "Rubio-Godoy V"

Activated CD8 T cells develop cytotoxicity against autologous cells bearing foreign Ags and self/tumor Ags. However, self-specific cytolysis needs to be kept under control to avoid overwhelming immunopathology. After peptide vaccination of melanoma patients, we studied molecular and functional properties of T cell subsets specific for the self/tumor Ag Melan-A/MART-1.

View Article and Find Full Text PDF

Tumor antigen-specific cytotoxic T cells (CTLs) play a major role in the adaptive immune response to cancers. This CTL response is often insufficient because of functional impairment, tumor escape mechanisms, or inhibitory tumor microenvironment. However, little is known about the fate of given tumor-specific CTL clones in cancer patients.

View Article and Find Full Text PDF

Despite major progress in T lymphocyte analysis in melanoma patients, TCR repertoire selection and kinetics in response to tumor Ags remain largely unexplored. In this study, using a novel ex vivo molecular-based approach at the single-cell level, we identified a single, naturally primed T cell clone that dominated the human CD8(+) T cell response to the Melan-A/MART-1 Ag. The dominant clone expressed a high-avidity TCR to cognate tumor Ag, efficiently killed tumor cells, and prevailed in the differentiated effector-memory T lymphocyte compartment.

View Article and Find Full Text PDF

The induction of potent CD8+ T cell responses by vaccines to fight microbes or tumors remains a major challenge, as many candidates for human vaccines have proved to be poorly immunogenic. Deoxycytidyl-deoxyguanosin oligodeoxynucleotides (CpG ODNs) trigger Toll-like receptor 9, resulting in dendritic cell maturation that can enhance immunogenicity of peptide-based vaccines in mice. We tested whether a synthetic ODN, CpG 7909, could improve human tumor antigen-specific CD8+ T cell responses.

View Article and Find Full Text PDF

Although tumor-specific CD8 T-cell responses often develop in cancer patients, they rarely result in tumor eradication. We aimed at studying directly the functional efficacy of tumor-specific CD8 T cells at the site of immune attack. Tumor lesions in lymphoid and nonlymphoid tissues (metastatic lymph nodes and soft tissue/visceral metastases, respectively) were collected from stage III/IV melanoma patients and investigated for the presence and function of CD8 T cells specific for the tumor differentiation antigen Melan-A/MART-1.

View Article and Find Full Text PDF

The goal of adoptive T cell therapy in cancer is to provide effective antitumor immunity by transfer of selected populations of tumor Ag-specific T cells. Transfer of T cells with high TCR avidity is critical for in vivo efficacy. In this study, we demonstrate that fluorescent peptide/MHC class I multimeric complexes incorporating mutations in the alpha3 domain (D227K/T228A) that abrogate binding to the CD8 coreceptor can be used to selectively isolate tumor Ag-specific T cells of high functional avidity from both in vitro expanded and ex vivo T cell populations.

View Article and Find Full Text PDF

Some cancer patients mount spontaneous T- and B-cell responses against their tumor cells. Autologous tumor reactive CD8 cytolytic T lymphocyte (CTL) and CD4 T-cell clones as well as antibodies from these patients have been used for the identification of genes encoding the target antigens. This knowledge opened the way for new approaches to the immunotherapy of cancer.

View Article and Find Full Text PDF

Synthetic combinatorial peptide libraries in positional scanning format (PS-SCL) have recently emerged as a useful tool for the analysis of T cell recognition. This includes identification of potentially cross-reactive sequences of self or pathogen origin that could be relevant for the understanding of TCR repertoire selection and maintenance, as well as of the cross-reactive potential of Ag-specific immune responses. In this study, we have analyzed the recognition of sequences retrieved by using a biometric analysis of the data generated by screening a PS-SCL with a tumor-reactive CTL clone specific for an immunodominant peptide from the melanocyte differentiation and tumor-associated Ag Melan-A.

View Article and Find Full Text PDF
Article Synopsis
  • A novel method was used to find tumor antigens that CD8(+) T cells can recognize by screening a vast library of synthetic peptides.
  • The research involved testing a library of over 300 billion nonapeptides in a cytotoxicity assay to identify which peptides were recognized by melanoma-reactive CTLs.
  • A mathematical analysis of the screening results led to the identification of a native antigenic peptide, showing the effectiveness of this approach in predicting CTL ligands.
View Article and Find Full Text PDF

Combinatorial libraries and in particular positional scanning synthetic combinatorial libraries (PS-SCL) allow the study of T cell specificity. This is a systematic and unbiased approach that does not require any previous knowledge about the clones to be studied, neither their specificity nor they major histocompatibility complex (MHC) restriction. Two different types of T cell clone ligands can be identified: (1) peptides that do not necessarily correspond to proteins described in the databases, and (2) peptides that are fragments of natural proteins.

View Article and Find Full Text PDF

In contrast with the low frequency of most single epitope reactive T cells in the preimmune repertoire, up to 1 of 1,000 naive CD8(+) T cells from A2(+) individuals specifically bind fluorescent A2/peptide multimers incorporating the A27L analogue of the immunodominant 26-35 peptide from the melanocyte differentiation and melanoma associated antigen Melan-A. This represents the only naive antigen-specific T cell repertoire accessible to direct analysis in humans up to date. To get insight into the molecular basis for the selection and maintenance of such an abundant repertoire, we analyzed the functional diversity of T cells composing this repertoire ex vivo at the clonal level.

View Article and Find Full Text PDF

Both the underlying molecular mechanisms and the kinetics of TCR repertoire selection following vaccination against tumor Ags in humans have remained largely unexplored. To gain insight into these questions, we performed a functional and structural longitudinal analysis of the TCR of circulating CD8(+) T cells specific for the HLA-A2-restricted immunodominant epitope from the melanocyte differentiation Ag Melan-A in a melanoma patient who developed a vigorous and sustained Ag-specific T cell response following vaccination with the corresponding synthetic peptide. We observed an increase in functional avidity of Ag recognition and in tumor reactivity in the postimmune Melan-A-specific populations as compared with the preimmune blood sample.

View Article and Find Full Text PDF

The use of synthetic combinatorial peptide libraries in positional scanning format (PS-SCL) has emerged recently as an alternative approach for the identification of peptides recognized by T lymphocytes. The choice of both the PS-SCL used for screening experiments and the method used for data analysis are crucial for implementing this approach. With this aim, we tested the recognition of different PS-SCL by a tyrosinase 368-376-specific CTL clone and analyzed the data obtained with a recently developed biometric data analysis based on a model of independent and additive contribution of individual amino acids to peptide antigen recognition.

View Article and Find Full Text PDF

To defend the host from malignancies, the immune system can spontaneously raise CD8(+) T-cell responses against tumor antigens. Investigating the functional state of tumor-reactive cytolytic T cells in cancer patients is a key step for understanding the role of these cells in tumor immunosurveillance and for evaluating the potential of immunotherapeutic approaches of vaccination against cancer. In this study we identified a subset of circulating tumor-reactive CD8(+) T lymphocytes, which specifically secreted IFN-gamma after exposition to autologous tumor cell lines in stage IV metastatic melanoma patients.

View Article and Find Full Text PDF

Avidity of Ag recognition by tumor-specific T cells is one of the main parameters that determines the potency of a tumor rejection Ag. In this study we show that the relative efficiency of staining of tumor Ag-specific T lymphocytes with the corresponding fluorescent MHC class I/peptide multimeric complexes can considerably vary with staining conditions and does not necessarily correlate with avidity of Ag recognition. Instead, we found a clear correlation between avidity of Ag recognition and the stability of MHC class I/peptide multimeric complexes interaction with TCR as measured in dissociation kinetic experiments.

View Article and Find Full Text PDF

Activation of CD8(+) cytolytic T lymphocytes (CTLs) by antigen is triggered by the interaction of clonotypic alphabeta T cell receptors (TCRs) with antigenic peptides bound to MHC class I molecules (pMHC complexes). Fluorescent multimeric pMHC complexes have been shown to specifically stain antigen-specific CTLs by directly binding the TCR. In tumor-infiltrating lymphocytes from a melanoma patient we found a high frequency of tyrosinase(368-376) peptide-specific cells as detected by IFN-gamma ELISPOT, without detectable staining with the corresponding A2/peptide multimers.

View Article and Find Full Text PDF

MAGE-encoded antigens, which are expressed by tumors of many histological types but not in normal tissues, are suitable candidates for vaccine-based immunotherapy of cancers. Thus far, however, T-cell responses to MAGE antigens have been detected only occasionally in cancer patients. In contrast, by using HLA/peptide fluorescent tetramers, we have observed recently that CD8(+) T cells specific for peptide MAGE-A10(254-262) can be detected frequently in peptide-stimulated peripheral blood mononuclear cells from HLA-A2-expressing melanoma patients and healthy donors.

View Article and Find Full Text PDF

The recent identification of molecularly defined human tumor antigens recognized by autologous CTLs has opened new opportunities for the development of antigen-specific cancer vaccines. Despite extensive work, however, the number of CTL-defined tumor antigens that are suitable targets for generic vaccination of cancer patients is still limited, mostly because of the painstaking and lengthy nature of the procedures currently used for their identification. A novel approach is based on the combined use of combinatorial peptide libraries in positional scanning format (positional scanning synthetic combinatorial peptide libraries, PS-SCLs) and tumor-reactive CTL clones.

View Article and Find Full Text PDF

We have shown previously that HLA-A*0201 melanoma patients can frequently develop a CTL response to the cancer testis antigen NY-ESO-1. In the present study, we have analyzed in detail the relative antigenicity and in vitro immunogenicity of natural and modified NY-ESO-1 peptide sequences. The results of this analysis revealed that, although suboptimal for binding to the HLA-A*0201 molecule, peptide NY-ESO-1 157-165 is, among natural sequences, very efficiently recognized by specific CTL clones derived from three melanoma patients.

View Article and Find Full Text PDF

MAGE genes encode tumor-specific shared antigens that are among the most interesting candidates for cancer vaccines. Despite extensive studies, however, CD8+ T-cell responses to MAGE-derived epitopes have been detected only occasionally in cancer patients, even after vaccination. In contrast with these findings, we report here that HLA-A2 melanoma patients respond frequently to the recently identified peptide MAGE-A10(254-262).

View Article and Find Full Text PDF

Recent studies have shown that CTL epitopes derived from tumor-associated Ags can be encoded by both primary and nonprimary open reading frames (ORF). In this study we have analyzed the HLA-A2-restricted CD8(+) T cell response to a recently identified CTL epitope derived from an alternative ORF product of gene LAGE-1 (named CAMEL), and the highly homologous gene NY-ESO-1 in melanoma patients. Using MHC/peptide tetramers we detected CAMEL(1-11)-specific CD8(+) T cells in peptide-stimulated PBMC as well as among tumor-infiltrated lymph node cells from several patients.

View Article and Find Full Text PDF