The COVID-19 pandemic underscored the promise of monoclonal antibody-based prophylactic and therapeutic drugs and revealed how quickly viral escape can curtail effective options. When the SARS-CoV-2 Omicron variant emerged in 2021, many antibody drug products lost potency, including Evusheld and its constituent, cilgavimab. Cilgavimab, like its progenitor COV2-2130, is a class 3 antibody that is compatible with other antibodies in combination and is challenging to replace with existing approaches.
View Article and Find Full Text PDFThe COVID-19 pandemic underscored the promise of monoclonal antibody-based prophylactic and therapeutic drugs, but also revealed how quickly viral escape can curtail effective options. With the emergence of the SARS-CoV-2 Omicron variant in late 2021, many clinically used antibody drug products lost potency, including Evusheld and its constituent, cilgavimab. Cilgavimab, like its progenitor COV2-2130, is a class 3 antibody that is compatible with other antibodies in combination and is challenging to replace with existing approaches.
View Article and Find Full Text PDFHighly concentrated radionuclide waste produced during the Cold War era is stored at US Department of Energy (DOE) production sites. This radioactive waste was often highly acidic and mixed with heavy metals, and has been leaking into the environment since the 1950s. Because of the danger and expense of cleanup of such radioactive sites by physicochemical processes, bioremediation methods are being developed for cleanup of contaminated ground and groundwater.
View Article and Find Full Text PDFBiosurfactants have several desirable characteristics in the industrial sector: detergency, antimicrobial effects, skin hydration, and emulsibility. Several yeast glycolipids are currently being utilized in these capacities: sophorolipids, ustilagic acid, and mannosylerythritol lipids (MELs). An emerging class of glycolipids, termed polyol esters of fatty acids (PEFA), have recently been reported for Rhodotorula babjevae, a basidiomycetous yeast species that secretes hyperacetylated congeners of PEFA (typically with 3-6 acetylation modifications).
View Article and Find Full Text PDFAntibody drug conjugates (ADC), in which small molecule cytotoxic agents are non-specifically linked to antibodies, can enable targeted delivery of chemotherapeutics to tumor cells. ADCs are often produced and administered as a mixture of conjugated antibodies with different drug to antibody ratios (DAR) resulting in complex and heterogeneous disposition kinetics. We developed a mechanism-based platform model that can describe and predict the complex pharmacokinetic (PK) behavior of ADCs with protease-cleavable valine-citrulline (VC) linker linked to Monomethylmonomethyl auristatin F/E by incorporating known mechanisms of ADC disposition.
View Article and Find Full Text PDFThe efficacy of antibody-drug conjugates (ADCs) targeted to solid tumors depends on biological processes that are hard to monitor in vivo. 89Zr-immunoPET of the ADC antibodies could help understand the performance of ADCs in the clinic by confirming the necessary penetration, binding, and internalization. This work studied monomethyl auristatin E (MMAE) ADCs against two targets in metastatic castration-resistant prostate cancer, TENB2 and STEAP1, in four patient-derived tumor models (LuCaP35V, LuCaP70, LuCaP77, LuCaP96.
View Article and Find Full Text PDFPurpose: Antibody-drug conjugates (ADC) selectively deliver a cytotoxic drug to cells expressing an accessible antigenic target. Here, we have appended monomethyl auristatin E (MMAE) to an antibody recognizing the SLC34A2 gene product NaPi2b, the type II sodium-phosphate cotransporter, which is highly expressed on tumor surfaces of the lung, ovary, and thyroid as well as on normal lung pneumocytes. This study evaluated its efficacy and safety in preclinical studies.
View Article and Find Full Text PDFReceptor tyrosine kinase-like orphan receptors (ROR) 1 and 2 are atypical members of the receptor tyrosine kinase (RTK) family and have been associated with several human diseases. The vertebrate RORs contain an ATP binding domain that deviates from the consensus amino acid sequence, although the impact of this deviation on catalytic activity is not known and the kinase function of these receptors remains controversial. Recently, ROR2 was shown to signal through a Wnt responsive, β-catenin independent pathway and suppress a canonical Wnt/β-catenin signal.
View Article and Find Full Text PDFThe adenomatous polyposis coli (APC) protein functions as a negative regulator of the Wnt signaling pathway. In this capacity, APC forms a "destruction complex" with Axin, CK1α, and GSK3β to foster phosphorylation of the Wnt effector β-catenin earmarking it for Lys-48-linked polyubiquitylation and proteasomal degradation. APC is conjugated with Lys-63-linked ubiquitin chains when it is bound to Axin, but it is unclear whether this modification promotes the APC-Axin interaction or confers upon APC an alternative function in the destruction complex.
View Article and Find Full Text PDFAntibody-drug conjugates (ADCs) are designed to combine the exquisite specificity of antibodies to target tumor antigens with the cytotoxic potency of chemotherapeutic drugs. In addition to the general chemical stability of the linker, a thorough understanding of the relationship between ADC composition and biological disposition is necessary to ensure that the therapeutic window is not compromised by altered pharmacokinetics (PK), tissue distribution, and/or potential organ toxicity. The six-transmembrane epithelial antigen of prostate 1 (STEAP1) is being pursued as a tumor antigen target.
View Article and Find Full Text PDFβ-Catenin-dependent Wnt signaling is initiated as Wnt binds to both the receptor FZD and coreceptor LRP5/6, which then assembles a multimeric complex at the cytoplasmic membrane face to recruit and inactivate the kinase GSK3. The large number and sequence diversity of Wnt isoforms suggest the possibility of domain-specific ligand-coreceptor interactions, and distinct binding sites on LRP6 for Wnt3a and Wnt9b have recently been identified in vitro. Whether mechanistically different interactions between Wnts and coreceptors might mediate signaling remains to be determined.
View Article and Find Full Text PDFWnt signaling is important for normal cell proliferation and differentiation, and mutations in pathway components are associated with human cancers. Recent studies suggest that altered wnt ligand/receptor interactions might also contribute to human tumorigenesis. Therefore, agents that antagonize wnt signaling at the extracellular level would be attractive therapeutics for these cancers.
View Article and Find Full Text PDFCancer cells differ from normal cells in their response to chemotherapy. We exploited this dissimilarity by identifying and targeting tumor-specific, cell-surface proteins whose expression is induced by the chemotherapeutic irinotecan (CPT-11; Camptosar). A cytotoxin-armed antibody reactive with one of these drug-induced surface proteins, the LY6D/E48 antigen, originally identified as the target of a monoclonal antibody reactive with squamous cell carcinomas, caused complete regression of colorectal tumor xenografts in mice treated with CPT-11, whereas either agent alone was less effective.
View Article and Find Full Text PDFNovel drug targets can be identified by differential analysis of RNA transcripts isolated from cancer cell lines and tissues. We have extended this approach by analyzing differences in gene expression resulting from the drug treatment of transformed and nontransformed cells. A mouse mammary epithelial cell line (C57MG), which conditionally expresses the Wnt-1 proto-oncogene, was left untreated or treated with retinoic acid in the presence or absence of Wnt-1 expression.
View Article and Find Full Text PDFAxin and the adenomatous polyposis coli protein (APC) interact to down-regulate the proto-oncogene beta-catenin. We show that transposition of an axin-binding site can confer beta-catenin regulatory activity to a fragment of APC normally lacking this activity. The fragment containing the axin-binding site also underwent hyperphosphorylation when coexpressed with axin.
View Article and Find Full Text PDFGenetic defects in the Wnt-1 signaling pathway contribute to human tumor progression and are especially prevalent in colorectal cancer. We screened mouse C57MG cells to isolate mRNAs induced by Wnt-1 and identified Stra6, an mRNA known to be up-regulated by retinoic acid. Up-regulation of Stra6 mRNA was also observed in hyperplastic mammary tissue and mammary gland tumors from transgenic mice expressing Wnt-1 and in human tumors that frequently harbor defects in Wnt-1 signaling.
View Article and Find Full Text PDFThe development of high-throughput methods for gene discovery has paved the way for the design of new strategies for genome-scale protein analysis. Lawrence Livermore National Laboratory and Onyx Pharmaceuticals, Inc., have produced an automatable system for the expression and purification of large numbers of proteins encoded by cDNA clones from the IMAGE (Integrated Molecular Analysis of Genomes and Their Expression) collection.
View Article and Find Full Text PDFThe molecular events that contribute to the progression of colon cancer are beginning to unravel. An initiating and probably obligatory event is the oncogenic activation of beta-catenin. This can come about by the loss of its negative regulator the adenomatous polyposis coli (APC) protein, or by mutations in the beta-catenin gene that result in a more stable protein product.
View Article and Find Full Text PDFMatrilysin is a matrix metalloproteinase expressed in the tumor cells of greater than 80% of intestinal adenomas. The majority of these intestinal tumors are associated with the accumulation of beta-catenin, a component of the cadherin adhesion complex and, through its association with the T Cell Factor (Tcf) DNA binding proteins, a regulator in the Wnt signal transduction pathway. In murine intestinal tumors, matrilysin transcripts show striking overlap with the accumulation of beta-catenin protein.
View Article and Find Full Text PDFDefects in beta-catenin regulation contribute to the neoplastic transformation of mammalian cells. Dysregulation of beta-catenin can result from missense mutations that affect critical sites of phosphorylation by glycogen synthase kinase 3beta (GSK3beta). Given that phosphorylation can regulate targeted degradation of beta-catenin by the proteasome, beta-catenin might interact with an E3 ubiquitin ligase complex containing an F-box protein, as is the case for certain cell cycle regulators.
View Article and Find Full Text PDFbeta-Catenin functions as a downstream component of the Wnt/Wingless signal transduction pathway and as an effector of cell-cell adhesion through its association with cadherins. To explore the in vivo effects of beta-catenin on proliferation, cell fate specification, adhesion, and migration in a mammalian epithelium, a human NH2-terminal truncation mutant (DeltaN89 beta-catenin) was expressed in the 129/Sv embryonic stem cell-derived component of the small intestine of adult C57Bl/6-ROSA26 left and right arrow 129/Sv chimeric mice. DeltaN89 beta-Catenin was chosen because mutants of this type are more stable than the wild-type protein, and phenocopy activation of the Wnt/Wingless signaling pathway in Xenopus and Drosophila.
View Article and Find Full Text PDFBackground: Inactivation of the adenomatous polyposis coli (APC) tumor suppressor protein is responsible for both inherited and sporadic forms of colon cancer. Growth control by APC may relate to its ability to downregulate beta-catenin post-translationally. In cancer, mutations in APC ablate its ability to regulate beta-catenin, and mutations in beta-catenin prevent its downregulation by wild-type APC.
View Article and Find Full Text PDFSignal transduction by beta-catenin involves its posttranslational stabilization and import to the nucleus where it interacts with transcription factors. Recent implications for beta-catenin signaling in cancer prompted us to examine colon cancer cell lines for the expression of LEF-1, a transcription factor that binds to beta-catenin. The analysis of several cell lines revealed the expression of LEF1 mRNA and a constitutive association of the LEF-1 protein with beta-catenin.
View Article and Find Full Text PDFThe mutation cluster region in the APC gene defines a region of approximately 660 bp, in which the vast majority of its somatic mutations are found. These mutations disrupt the polypeptide chain, typically eliminating five of the seven repeated sequences of 20 amino acids (aa) each in the central region of the APC protein. To examine the relationship between loss of this structure and loss of function, we constructed APC deletion mutants that progressively truncated the protein across the mutation cluster region.
View Article and Find Full Text PDFCell Growth Differ
July 1997
BRCA1, the familial breast cancer susceptibility gene product, is a 220-kDA phosphorylated protein. BRCA1 immunoprecipitated from MCF7 cells blocked in G1-S phase or progressing through S-phase of the cell cycle migrated more slowly through SDS polyacrylamide gels than BRCA1 from cells maintained in serum-supplemented media, serum-free media for 24 h, or delayed in G2-M phase by treatment with colchicine. Restoration of BRCA1 to the faster-migrating form, which occurred on release of cells from the G1-S-phase block, was prevented by the phosphatase inhibitor okadaic acid.
View Article and Find Full Text PDF