Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. Although standard-of-care chemotherapeutics are sufficient for most ALL cases, there are subsets of patients with poor response who relapse in disease. The biology underlying differences between subtypes and their response to therapy has only partially been explained by genetic and transcriptomic profiling.
View Article and Find Full Text PDFWe have curated an in-depth subcellular proteomic map of primary human CD4+ T cells, divided into cytosolic, nuclear and membrane fractions generated by an optimized fractionation and HiRIEF-LC-MS/MS workflow for limited amounts of primary cells. The subcellular proteome of T cells was mapped under steady state conditions, as well as upon 15 min and 1 h of T cell receptor (TCR) stimulation, respectively. We quantified the subcellular distribution of 6,572 proteins and identified a subset of 237 potentially translocating proteins, including both well-known examples and novel ones.
View Article and Find Full Text PDFRegulatory T cells (Tregs) act as indispensable unit for maintaining peripheral immune tolerance mainly by regulating effector T cells. T cells resistant to suppression by Tregs pose therapeutic challenges in the treatment of autoimmune diseases, while augmenting susceptibility to suppression may be desirable for cancer therapy. To understand the cell intrinsic signals in T cells during suppression by Tregs, we have previously performed a global phosphoproteomic characterization.
View Article and Find Full Text PDFRegulatory T cells (Tregs) control key events of immune tolerance, primarily by suppression of effector T cells. We previously revealed that Tregs rapidly suppress T cell receptor (TCR)-induced calcium store depletion in conventional CD4CD25 T cells (Tcons) independently of IP levels, consequently inhibiting NFAT signaling and effector cytokine expression. Here, we study Treg suppression mechanisms through unbiased phosphoproteomics of primary human Tcons upon TCR stimulation and Treg-mediated suppression, respectively.
View Article and Find Full Text PDFRegulatory T cells (Tregs) are an integral part of peripheral tolerance, suppressing immune reactions against self-structures and thus preventing autoimmune diseases. Clinical approaches to adoptively transfer Tregs, or to deplete Tregs in cancer, are underway with promising first outcomes. Because the number of naturally occurring Tregs (nTregs) is very limited, studying certain Treg features using in vitro induced Tregs (iTregs) can be advantageous.
View Article and Find Full Text PDFWhile pro-inflammatory immune responses are a requirement to combat microbes, uncontrolled self-directed inflammatory immune responses are the hallmark of autoimmune diseases. Restoration of immunological tolerance involves both suppression of ongoing tissue-destructive immune responses and re-education of the host immune system. Both functionally immunosuppressive macrophages (M2) and regulatory T cells (Tregs) are implicated in these processes.
View Article and Find Full Text PDFHuman plasmacytoid dendritic cells (pDCs) represent a highly specialized naturally occurring dendritic-cell subset and are the main producers of type I interferons (IFNs) in response to viral infections. We show that human pDCs activated by the preventive vaccine FSME specifically up-regulate CD56 on their surface, a marker that was thought to be specific for NK cells and associated with cytolytic effector functions. We observed that FSME-activated pDCs specifically lysed NK target cells and expressed cytotoxic molecules, such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and granzyme B.
View Article and Find Full Text PDF