Optical cone beam computed tomography (CT), using a digital camera to acquire 2D projection images, provides a fast, mechanically simple method for 3D radiation dosimetry. However, original cone beam designs had poor accuracy as a result of considerable scatter/stray light reaching the camera. Previously, our group presented a redesigned convergent light source for optical cone beam CT that considerably reduced stray light contribution and improved accuracy (Dekker et al 2016 Phys.
View Article and Find Full Text PDFOptical cone beam computed tomography (CT) scanning of radiochromic gel dosimeters, using a CCD camera and a low stray light convergent source, provides fast, truly 3D radiation dosimetry with high accuracy. However, a key limiting factor in radiochromic gel dosimetry at large (⩾10 cm diameter) volumes is the initial attenuation of the dosimeters. It is not unusual to observe a 5-10× difference in signal intensity through the dosimeter center versus through the surrounding medium in pre-irradiation images.
View Article and Find Full Text PDF