Publications by authors named "Rubens Lopez"

Over 60% of bacterial infections (and up to 80% of chronic infections) are currently considered to involve microbial growth in biofilms. This peculiar form of life poses an array of problems in human clinical practice, from infections associated with the implant of prosthetic devices and dental plaque formation to diseases such as cystic fibrosis, otitis media, and endocarditis. Biofilms are also at the basis of a variety of problems in industry.

View Article and Find Full Text PDF

Objectives: In an innovative therapeutic exploitation against antibiotic-resistant Streptococcus pneumoniae, here we have evaluated the in vitro activity of a purified bacterially-encoded cell wall lytic enzyme, LytA (the major pneumococcal autolysin), and compared it with those of Cpl-1 and Pal (pneumococcal phage lytic enzymes) and two antibiotics versus four pneumococcal strains.

Methods: Two serotype 3, penicillin-susceptible strains and two penicillin-resistant (serotypes 19F and 19A, respectively) S. pneumoniae clinical isolates were used.

View Article and Find Full Text PDF

The in vitro and in vivo antipneumococcal activities of the main pneumococcal autolysin (LytA) and Cpl-1, a lysozyme encoded by phage Cp-1, were studied. Intraperitoneal therapy with LytA or high-dose Cpl-1 remarkably reduced peritoneal bacterial counts (>5 log(10) CFU/ml) compared with those for the controls. After intravenous injection, LytA was the most effective treatment.

View Article and Find Full Text PDF

LytA, the main autolysin of Streptococcus pneumoniae, was the first member of the bacterial N-acetylmuramoyl-l-alanine amidase (NAM-amidase) family of proteins to be well characterized. This autolysin degrades the peptidoglycan bonds of pneumococcal cell walls after anchoring to the choline residues of the cell wall teichoic acids via its choline-binding module (ChBM). The latter is composed of seven repeats (ChBRs) of approximately 20 amino acid residues.

View Article and Find Full Text PDF

A novel Streptococcus pneumoniae plasmid (pSpnP1; 5413bp) has been isolated from the multidrug-resistant clone Poland(23F)-16, and its complete nucleotide sequence has been determined. Sequence analysis predicted seven co-directional open reading frames and comparative analyses revealed that plasmid pSpnP1 is different to pDP1, the only previously described pneumococcal plasmid, whereas it is highly similar to pSt08, a plasmid from Streptococcus thermophilus. A double-stranded origin for replication similar to the replication origin of the pC194/pUB110 family was located upstream of the putative rep gene (orf2).

View Article and Find Full Text PDF

The study of Streptococcus pneumoniae (the pneumococcus) had been a central issue in medicine for many decades until the use of antibiotics became generalized. Many fundamental contributions to the history of microbiology should credit this bacterium: the capsular precipitin reaction, the major role this reaction plays in the development of immunology through the identification of polysaccharides as antigens, and, mainly, the demonstration, by genetic transformation, that genes are composed of DNA-the finding from the study of bacteria that has had the greatest impact on biology. Currently, pneumococcus is the most common etiologic agent in acute otitis media, sinusitis, and pneumonia requiring the hospitalization of adults.

View Article and Find Full Text PDF

Streptococcus pneumoniae colonizes the human upper respiratory tract, and this asymptomatic colonization is known to precede pneumococcal disease. In this report, chemically defined and semisynthetic media were used to identify the initial steps of biofilm formation by pneumococcus during growth on abiotic surfaces such as polystyrene or glass. Unencapsulated pneumococci adhered to abiotic surfaces and formed a three-dimensional structure about 25 microm deep, as observed by confocal laser scanning microscopy and low-temperature scanning electron microscopy.

View Article and Find Full Text PDF

The nucleotide sequences of the lytA gene from 29 pneumococcal isolates of various serotypes and 22 additional streptococci of the mitis group (including two Streptococcus pseudopneumoniae strains) have been compared and found to correspond to 19 typical (927-bp-long) and 20 atypical (921-bp-long) alleles. All the Streptococcus pneumoniae strains harbored typical lytA alleles, whereas nonpneumococcal isolates belonging to the mitis group always carried atypical alleles. A sequence alignment showed that the main difference between typical and atypical lytA alleles resided in 102 nucleotide positions (including the 6 bp absent from atypical alleles).

View Article and Find Full Text PDF

The skl gene from Streptococcus mitis SK137 encodes a peptidoglycan hydrolase (Skl) that has been purified and biochemically characterized. Analysis of the degradation products obtained by digestion of pneumococcal cell walls with Skl revealed that this enzyme is an N-acetylmuramoyl-L-alanine amidase (EC 3.5.

View Article and Find Full Text PDF

The choline-binding protein LytB, an N-acetylglucosaminidase of Streptococcus pneumoniae, is the key enzyme for daughter cell separation and is believed to play a critical pathogenic role, facilitating bacterial spreading during infection. Because of these peculiarities LytB is a putative vaccine target. To determine the extent of LytB polymorphism, the lytB alleles from seven typical, clinical pneumococcal isolates of various serotypes and from 13 additional streptococci of the mitis group (12 atypical pneumococci and the Streptococcus mitis type strain) were sequenced.

View Article and Find Full Text PDF

The Streptococcus pneumoniae LytC lysozyme is responsible for autolysis at 30 degrees C (a temperature close to that of the upper respiratory tract), promotes DNA release in competent cultures, and participates in nasopharyngeal colonization. We show that the virulent pneumococcal TIGR4 strain encodes an active LytC enzyme, in contrast with genome-based predictions.

View Article and Find Full Text PDF

The search for new drugs against Streptococcus pneumoniae (pneumococcus) is driven by the 1.5 million deaths it causes annually. Choline-binding proteins attach to the pneumococcal cell wall through domains that recognize choline moieties, and their involvement in pneumococcal virulence makes them potential targets for drug development.

View Article and Find Full Text PDF

Two new temperate bacteriophages exhibiting a Myoviridae (phiB6) and a Siphoviridae (phiHER) morphology have been isolated from Streptococcus mitis strains B6 and HER 1055, respectively, and partially characterized. The lytic phage genes were overexpressed in Escherichia coli, and their encoded proteins were purified. The lytAHER and lytAB6 genes are very similar (87% identity) and appeared to belong to the group of the so-called typical LytA amidases (atypical LytA displays a characteristic two-amino-acid deletion signature).

View Article and Find Full Text PDF

Streptococcus pneumoniae has re-emerged as a major cause of morbidity and mortality throughout the world and its continuous increase in antimicrobial resistance is rapidly becoming a leading cause of concern for public health. This review is focussed on the analysis of recent insights on the study of capsular polysaccharide biosynthesis, and cell wall (murein) hydrolases, two fundamental pneumococcal virulence factors. Besides, we have also re-evaluated the molecular biology of the pneumococcal phage, their possible role in pathogenicity and in the shaping of natural populations of S.

View Article and Find Full Text PDF

Infectious diseases currently kill more than 15 million people annually, and the WHO estimates that every year 1.6 million people die from pneumococcal diseases. Streptococcus pneumoniae (pneumococcus), a bacterium with a long biological pedigree, best illustrates the rapid evolution of antibiotic resistance, which has led to major public health concern.

View Article and Find Full Text PDF

The abundant presence of temperate phages in the chromosomes of clinical isolates of Streptococcus pneumoniae has been well documented. The genome of MM1, a temperate phage of pneumococcus, has been isolated as a DNA-protein complex. The protein is covalently bound to the DNA, was iodinated in vitro with Na125I, and has an Mr of 22,000.

View Article and Find Full Text PDF

We report the complete genomic sequence of EJ-1, an inducible prophage isolated from an atypical Streptococcus pneumoniae strain that belongs to the Myoviridae morphology family. The phage and bacterial recombinational sites (attachment sites) have been also determined. The genome of the EJ-1 prophage (42935 bp) is organized in 73 open reading frames (ORFs) and in at least five major clusters.

View Article and Find Full Text PDF

Objectives: Phage-coded lysins, i.e. murein hydrolases, are enzymes that destroy the cell wall of bacteria.

View Article and Find Full Text PDF

The temperate phage MM1 forms stable lysogens in Streptococcus pneumoniae. We report here the first characterization of the lysogenic control region in Pneumococcus which contains two functional divergent promoters (P(R) and P(L)). MM1 encodes a 14-kDa cI protein (CI) that appears to be responsible for maintaining the lysogenic state in Pneumococcus since it prevents elongation of the transcripts controlled by P(R) and P(L).

View Article and Find Full Text PDF

A temperate bacteriophage (VO1) has been isolated from the Streptococcus pneumoniae type 19F multiresistant epidemic 8249 strain (South African strain). Structural analysis of the specific integration site, protein composition, restriction patterns, and molecular dissection of the lytic system of this phage revealed high sequence similarity with MM1, a temperate phage from the Spain23F-1 strain of pneumococcus, another multiresistant epidemic clone. The different pneumococcal strains sequenced so far exhibit an identical and single attB located in the same site of the genome.

View Article and Find Full Text PDF

The genome of MM1 (40,248 bp), a temperate bacteriophage from the Spain(23F)-1 multiresistant epidemic clone of Streptococcus pneumoniae, is organized in 53 open reading frames (ORFs) and in at least five functional clusters. Bioinformatic and N-terminal amino acid sequence analyses enabled the assignment of possible functions to 26 ORFs. Analyses comparing the MM1 genome with those of other bacteriophages revealed similarities, mainly with genomes of phages infecting gram-positive bacteria, which suggest recent exchange of genes between species colonizing the same habitat.

View Article and Find Full Text PDF

The DNA region encoding the mature form of a pneumococcal murein hydrolase (LytB) was cloned and expressed in Escherichia coli. LytB was purified by affinity chromatography, and its activity was suggested to be the first identified endo-beta-N-acetylglucosaminidase of Streptococcus pneumoniae. LytB can remove a maximum of only 25% of the radioactivity from [(3)H]choline-labeled pneumococcal cell walls in in vitro assays.

View Article and Find Full Text PDF

Very little is known about the in vivo regulation of the catalytic activity of the major pneumococcal autolysin (LytA), a surface-exposed enzyme that rules the self-destruction of pneumococcal cells through degradation of their peptidoglycan backbone. Two new crystal forms of the cell wall anchoring domain of LytA were obtained, and their structures were solved and refined to 2.4A and 2.

View Article and Find Full Text PDF