Acinetobacter baumannii is an opportunistic nosocomial pathogen with high morbidity and mortality rates. Current treatment options for this pathogen are limited due to its increasing resistance to last-resort antibiotics. Despite A.
View Article and Find Full Text PDFThe sphingomonads encompass a diverse group of bacteria within the family , with the presence of sphingolipids on their cell surface instead of lipopolysaccharide as their main common feature. They are particularly interesting for bioremediation purposes due to their ability to degrade or metabolise a variety of recalcitrant organic pollutants. However, research and development on their full bioremediation potential has been hampered because of the limited number of tools available to investigate and modify their genome.
View Article and Find Full Text PDFAcinetobacter baumannii is a Gram-negative priority pathogen that can readily overcome antibiotic treatment through a range of intrinsic and acquired resistance mechanisms. Treatment of carbapenem-resistant A. baumannii largely relies on the use of colistin in cases where other treatment options have been exhausted.
View Article and Find Full Text PDFAntimicrobial resistance is one of the most pressing concerns of our time. The human diet is rich with compounds that alter bacterial gut communities and virulence-associated behaviours, suggesting food additives may be a niche for the discovery of novel anti-virulence compounds. Here, we identify three artificial sweeteners, saccharin, cyclamate and acesulfame-K (ace-K), that have a major growth inhibitory effect on priority pathogens.
View Article and Find Full Text PDFJ Antimicrob Chemother
November 2022
Background: The current mutagenesis tools for Acinetobacter baumannii leave selection markers or residual sequences behind, or involve tedious counterselection and screening steps. Furthermore, they are usually adapted for model strains, rather than for MDR clinical isolates.
Objectives: To develop a scar-free genome-editing tool suitable for chromosomal and plasmid modifications in MDR A.
Sphingopyxis granuli TFA is a contaminant degrading alphaproteobacterium that responds to adverse conditions by inducing the general stress response (GSR), an adaptive response that controls the transcription of a variety of genes to overcome adverse conditions. The core GSR regulators (the response regulator PhyR, the anti-σ factor NepR and the σ factor EcfG) are duplicated in TFA, being PhyR1 and PhyR2, NepR1 and NepR2 and EcfG1 and EcfG2. Based on multiple genetic, phenotypical and biochemical evidences including in vitro transcription assays, we have assigned distinct functional features to each paralogue and assessed their contribution to the GSR regulation, dictating its timing and the intensity.
View Article and Find Full Text PDFThe ability of bacterial core RNA polymerase (RNAP) to interact with different σ factors, thereby forming a variety of holoenzymes with different specificities, represents a powerful tool to coordinately reprogram gene expression. Extracytoplasmic function σ factors (ECFs), which are the largest and most diverse family of alternative σ factors, frequently participate in stress responses. The classification of ECFs in 157 different groups according to their phylogenetic relationships and genomic context has revealed their diversity.
View Article and Find Full Text PDFSphingopyxis granuli strain TFA is able to grow on the organic solvent tetralin as the only carbon and energy source. The aerobic catabolic pathway for tetralin, the genes involved and their regulation have been fully characterised. Unlike most of the bacteria belonging to the sphingomonads group, this strain is able to grow in anoxic conditions by respiring nitrate, though not nitrite, as the alternative electron acceptor.
View Article and Find Full Text PDFUnder ever-changing environmental conditions, the General Stress Response (GSR) represents a lifesaver for bacteria in order to withstand hostile situations. In α-proteobacteria, the EcfG-type extracytoplasmic function (ECF) σ factors are the key activators of this response at the transcriptional level. In this work, we address the hierarchical function of the ECF σ factor paralogs EcfG1 and EcfG2 in triggering the GSR in Sphingopyxis granuli TFA and describe the role of EcfG2 as global switch of this response.
View Article and Find Full Text PDFSphingomonads comprises a group of interesting aerobic bacteria because of their ubiquity and metabolic capability of degrading many recalcitrant contaminants. The tetralin-degrader Sphingopyxis granuli strain TFA has been recently reported as able to anaerobically grow using nitrate as the alternative electron acceptor and so far is the only bacterium with this ability within the sphingomonads group. To understand how strain TFA thrives under anoxic conditions, a differential transcriptomic analysis while growing under aerobic or anoxic conditions was performed.
View Article and Find Full Text PDF