Eukaryotic microalgae hold great promise for the bioproduction of fuels and higher value chemicals. However, compared with model genetic organisms such as Escherichia coli and Saccharomyces cerevisiae, characterization of the complex biology and biochemistry of algae and strain improvement has been hampered by the inefficient genetic tools. To date, many algal species are transformable only via particle bombardment, and the introduced DNA is integrated randomly into the nuclear genome.
View Article and Find Full Text PDFTransitions in community genomic features and biogeochemical processes were examined in surface and subsurface chlorophyll maximum (SCM) microbial communities across a trophic gradient from mesotrophic waters near San Diego, California to the oligotrophic Pacific. Transect end points contrasted in thermocline depth, rates of nitrogen and CO2 uptake, new production and SCM light intensity. Relative to surface waters, bacterial SCM communities displayed greater genetic diversity and enrichment in putative sulfur oxidizers, multiple actinomycetes, low-light-adapted Prochlorococcus and cell-associated viruses.
View Article and Find Full Text PDFTo increase knowledge of transcript diversity for the giant kelp, Macrocystis pyrifera, and assess gene expression across naturally occurring depth gradients in light, temperature and nutrients, we sequenced four cDNA libraries created from blades collected at the sea surface and at 18 m depth during the winter and summer. Comparative genomics cluster analyses revealed novel gene families (clusters) in existing brown alga expressed sequence tag data compared with other related algal groups, a pattern also seen with the addition of M. pyrifera sequences.
View Article and Find Full Text PDFCoastal lagoons, both hypersaline and freshwater, are common, but still understudied ecosystems. We describe, for the first time, using high throughput sequencing, the extant microbiota of two large and representative Mediterranean coastal lagoons, the hypersaline Mar Menor, and the freshwater Albufera de Valencia, both located on the south eastern coast of Spain. We show there are considerable differences in the microbiota of both lagoons, in comparison to other marine and freshwater habitats.
View Article and Find Full Text PDFDiatoms are responsible for ~40% of marine primary production and are key players in global carbon cycling. There is mounting evidence that diatom growth is influenced by cobalamin (vitamin B(12)) availability. This cobalt-containing micronutrient is only produced by some bacteria and archaea but is required by many diatoms and other eukaryotic phytoplankton.
View Article and Find Full Text PDFBacteria in the 16S rRNA clade SAR86 are among the most abundant uncultivated constituents of microbial assemblages in the surface ocean for which little genomic information is currently available. Bioinformatic techniques were used to assemble two nearly complete genomes from marine metagenomes and single-cell sequencing provided two more partial genomes. Recruitment of metagenomic data shows that these SAR86 genomes substantially increase our knowledge of non-photosynthetic bacteria in the surface ocean.
View Article and Find Full Text PDFBackground: The tree of life is usually rooted between archaea and bacteria. We have previously presented three arguments that support placing the root of the tree of life in bacteria. The data have been dismissed because those who support the canonical rooting between the prokaryotic superkingdoms cannot imagine how the vast divide between the prokaryotic superkingdoms could be crossed.
View Article and Find Full Text PDFBackground: The wealth of prokaryotic genomic data available has revealed that the histories of many genes are inconsistent, leading some to question the value of the tree of life hypothesis. It has been argued that a tree-like representation requires suppressing too much information, and that a more pluralistic approach is necessary for understanding prokaryotic evolution. We argue that trees may still be a useful representation for evolutionary histories in light of new data.
View Article and Find Full Text PDFThe fundamental chemistry of trace elements dictates the molecular speciation and reactivity both within cells and the environment at large. Using protein structure and comparative genomics, we elucidate several major influences this chemistry has had upon biology. All of life exhibits the same proteome size-dependent scaling for the number of metal-binding proteins within a proteome.
View Article and Find Full Text PDFBackground: The root of the tree of life has been a holy grail ever since Darwin first used the tree as a metaphor for evolution. New methods seek to narrow down the location of the root by excluding it from branches of the tree of life. This is done by finding traits that must be derived, and excluding the root from the taxa those traits cover.
View Article and Find Full Text PDFCurr Opin Struct Biol
June 2009
In this, the 200th anniversary of Charles Darwin's birth and the 150th anniversary of the publication of the Origin of Species, it is fitting to revisit the classification of protein structures from an evolutionary perspective. Existing classifications use homologous sequence relationships, but knowing that structure is much more conserved that sequence creates an iterative loop from which structures can be further classified beyond that of the domain, thereby teasing out distant evolutionary relationships. The desired classification scheme is then one in which a fold is merely semantics and structure can be classified as either ancestral or derived.
View Article and Find Full Text PDFThe spliceosome, a sophisticated molecular machine involved in the removal of intervening sequences from the coding sections of eukaryotic genes, appeared and subsequently evolved rapidly during the early stages of eukaryotic evolution. The last eukaryotic common ancestor (LECA) had both complex spliceosomal machinery and some spliceosomal introns, yet little is known about the early stages of evolution of the spliceosomal apparatus. The Sm/Lsm family of proteins has been suggested as one of the earliest components of the emerging spliceosome and hence provides a first in-depth glimpse into the evolving spliceosomal apparatus.
View Article and Find Full Text PDFThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes.
View Article and Find Full Text PDF