In this study related to human brain SPECT imaging, simulation of half-cone-beam (HCB) collimation with different scan paths is performed and compared with simulated fan-beam and parallel-hole circular orbit acquisitions of disk-phantom projection data. Acquisition types are quantitatively evaluated based on the photon detection efficiency, the root-mean-squared error, contrast and signal-to-noise ratio measurements of the reconstructed images. We demonstrate that a triple-camera SPECT system with half-cone-beam collimators and circle-and-helix scan paths can offer up to a 26% efficiency increase over fan-beam, and up to a 128% increase over parallel-hole collimators for equal spatial resolutions, and display no visible axial sampling artifacts in reconstructed disk-phantom images.
View Article and Find Full Text PDFUnlabelled: The objective of this study, which is related to human brain SPECT, was to increase the sensitivity of a triple-camera SPECT system and reduce statistical noise in reconstructed images using a combination of converging collimators. The reason for combining collimators is to ensure both high sensitivity and sufficient sampling without trading off spatial resolution.
Methods: A high-sensitivity half-cone-beam (HCB) collimator, designed specifically for brain imaging, was combined with other collimators and compared with conventional parallel-beam and fanbeam circular orbit acquisitions.
In this study related to human brain SPECT imaging, simulation of half-cone-beam collimation and helical-path data acquisition is performed. We discuss problems related to circular-orbit acquisition using cone-beam collimation, such as shoulder interference resulting in object truncation, and insufficient sampling of the object resulting in axial distortions in the reconstructed images. We demonstrate that a triple-camera SPECT system with half-cone-beam collimation and single-revolution helical-path acquisition eliminates both issues and offers substantially improved sampling and almost artifact-free reconstruction of the object.
View Article and Find Full Text PDF