This paper focuses on the characterization of radio propagation, and data communication in a marine environment. More specifically, we consider signal propagation when three different sub-gigahertz industrial, scientific, and medical (ISM) bands, i.e.
View Article and Find Full Text PDFThis paper introduces a novel methodology to optimize the design of a ratiometric rotary inductive position sensor (IPS) fabricated in printed circuit board (PCB) technology. The optimization aims at reducing the linearity error of the sensor and amplitude mismatch between the voltages on the two receiving (RX) coils. Distinct from other optimization techniques proposed in the literature, the sensor footprint and the target geometry are considered as a non-modifiable input.
View Article and Find Full Text PDFWe propose a novel technique to estimate the total volume of unknown insulating inclusions in an electrically conducting body from voltage measurements. Unlike conventional Electrical Impedance Tomography (EIT) systems that usually exhibit low spatial resolution and accuracy, the proposed device is composed of a pair of driving electrodes which, supplied with a known sinusoidal voltage, create a current density field inside a region of interest. The electrodes are designed to generate a current density field in the region of interest that is uniform, to a good approximation, when the inclusions are not present.
View Article and Find Full Text PDFA new biosensor for the real-time analysis of thrombus formation is reported. The fast and accurate monitoring of the individual thrombotic risk represents a challenge in cardiovascular diagnostics and in treatment of hemostatic diseases. Thrombus volume, as representative index of the related thrombotic status, is usually estimated with confocal microscope at the end of each in vitro experiment, without providing a useful behavioral information of the biological sample such as platelets adhesion and aggregation in flowing blood.
View Article and Find Full Text PDFA topology preserving skeleton is a synthetic representation of an object that retains its topology and many of its significant morphological properties. The process of obtaining the skeleton, referred to as skeletonization or thinning, is a very active research area. It plays a central role in reducing the amount of information to be processed during image analysis and visualization, computer-aided diagnosis, or by pattern recognition algorithms.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
September 2012
This paper presents a novel discrete model for cell membranes and electrodes contact impedances alternative to the widely used finite elements. The finite element approach can be considered as a tool for constructing finite dimensional systems of equations that approximate the specific electroquasistatic biological problem on the discrete level. Although the finite element technique is explained typically in terms of variational or weighted-residual approaches, another, less familiar way is available to reformulate geometrically the same physical problem.
View Article and Find Full Text PDF