The charged aerosol detector (CAD) is frequently employed in liquid chromatography for the analysis of small polar and ionizable compounds such as amino acids and amino sugars, which provide a weak chromophore only. Separation of these compounds is achieved by means of ion pair chromatography (IPC), and, more recently, hydrophilic interaction chromatography (HILIC) techniques. However, as the CAD's response is highly dependent on the mobile phase composition, the substantial differences in the mobile phase composition of IPC and HILIC have a distinct impact on the detector's performance.
View Article and Find Full Text PDFThe charged aerosol detector (CAD) is the latest representative of aerosol-based detectors that generate a response independent of the analytes' chemical structure. This study was aimed at accurately predicting the CAD response of homologous fatty acids under varying experimental conditions. Fatty acids from C12 to C18 were used as model substances due to semivolatile characterics that caused non-uniform CAD behaviour.
View Article and Find Full Text PDFRecently, charged aerosol detection (CAD), a universal detection technique in liquid chromatography, has been introduced into monographs of the European Pharmacopoeia (Ph. Eur.), which now employs HPLC-UV-CAD for assessing the impurities of the drug vigabatrin.
View Article and Find Full Text PDFCharged aerosol detection (CAD) is an universal technique in liquid chromatography that is increasingly used for the quality control of drugs. Consequently, it has found its way into compendial monographs promoted by its simple and robust application. However, the response of CAD is inherently nonlinear due to its principle of function.
View Article and Find Full Text PDFFor the compendial related substances test of l-aspartic acid (Asp) and glycine (Gly), two separate reversed-phase ion-pair high-performance liquid chromatography methods coupled with charged aerosol and ultraviolet detection were developed. Separation of all putative impurities, in particular of the related carboxylic and amino acids, was achieved using volatile perfluorocarboxylic acids as ion-pairing reagents on a polar embedded C18 stationary phase. It was shown that an adjustment of the evaporation temperature of the charged aerosol detector (CAD) was an efficient strategy for meeting the required quantitation limits, when dealing with non-volatile analytes.
View Article and Find Full Text PDFIn this study, a quantitative structure-property relationship model was built in order to link molecular descriptors and chromatographic parameters as inputs towards CAD responsiveness. Aminoglycoside antibiotics, sugars, and acetylated amino sugars, which all lack a UV/vis chromophore, were selected as model substances due to their polar nature that represents a challenge in generating a CAD response. Acetone, PFPA, flow rate, data rate, filter constant, SM5_B(s), ATS7s, SpMin1_Bh(v), Mor09e, Mor22e, E1u, R7v+, and VP as the most influential inputs were correlated with the CAD response by virtue of ANN applying a backpropagation learning rule.
View Article and Find Full Text PDFThe analysis of polysorbate 80 is a challenge because all components lack a chromophore. Here, an ultra-high-performance liquid chromatography system equipped with a charged aerosol detector (UHPLC-CAD) was used to study the effect of systematic variation of the CAD settings, namely evaporation temperature, filter constant and power function value (PFV), on the detector response of fatty acid standards and manufacturing batches of polysorbate. Evaporation temperature and filter constant strongly affect the detection limits described by signal-to-noise (S/N) ratios.
View Article and Find Full Text PDF