Crops generally have seeds larger than their wild progenitors´ and with reduced dormancy. In wild plants, seed mass and allocation to the seed coat (a proxy for physical dormancy) scale allometrically so that larger seeds tend to allocate less to the coats. Larger seeds and lightweight coats might thus have evolved as correlated traits in crops.
View Article and Find Full Text PDFCrops have resource-acquisitive leaf traits, which are usually attributed to the process of domestication. However, early choices of wild plants amenable for domestication may also have played a key role in the evolution of crops' physiological traits. Here we compiled data on 1,034 annual herbs to place the ecophysiological traits of 69 crops' wild progenitors in the context of global botanical variation, and we conducted a common-garden experiment to measure the effects of domestication on crop ecophysiology.
View Article and Find Full Text PDFOver the course of history, humans have moved crops from their regions of origin to new locations across the world. The social, cultural and economic drivers of these movements have generated differences not only between current distributions of crops and their climatic origins, but also between crop distributions and climate suitability for their production. Although these mismatches are particularly important to inform agricultural strategies on climate change adaptation, they have, to date, not been quantified consistently at the global level.
View Article and Find Full Text PDFGrowth rates vary widely among plants with different strategies. For crops, evolution under predictable and high-resource environments might favour rapid resource acquisition and growth, but whether this strategy has consistently evolved during domestication and improvement remains unclear. Here we report a comprehensive study of the evolution of growth rates based on comparisons among wild, landrace, and improved accessions of 19 herbaceous crops grown under common conditions.
View Article and Find Full Text PDFHuman food production is dominated globally by a small number of crops. Why certain crops have attained high agricultural relevance while others have remained minor might partially stem from their different origins. Here, we analyse a dataset of 866 crops to show that seed crops and species originating from seasonally dry environments tend to have the greatest agricultural relevance, while phylogenetic affinities play a minor role.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2021
The functional traits of organisms within multispecies assemblages regulate biodiversity effects on ecosystem functioning. Yet how traits should assemble to boost multiple ecosystem functions simultaneously (multifunctionality) remains poorly explored. In a multibiome litter experiment covering most of the global variation in leaf trait spectra, we showed that three dimensions of functional diversity (dispersion, rarity, and evenness) explained up to 66% of variations in multifunctionality, although the dominant species and their traits remained an important predictor.
View Article and Find Full Text PDFThe Anthropocene epoch is partly defined by anthropogenic spread of crops beyond their centres of origin. At global scales, evidence indicates that species-level taxonomic diversity of crops being cultivated on large-scale agricultural lands has increased linearly over the past 50 years. Yet environmental and socio-economic differences support expectations that temporal changes in crop diversity vary across regions.
View Article and Find Full Text PDFThe origins of agriculture were key events in human history, during which people came to depend for their food on small numbers of animal and plant species. However, the biological traits determining which species were domesticated for food provision, and which were not, are unclear. Here, we investigate the phylogenetic distribution of livestock and crops, and compare their phenotypic traits with those of wild species.
View Article and Find Full Text PDFThe tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching because of global feedback effects between vegetation and climate. A better understanding of how environmental factors shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem functioning. Here we explore the biome-wide relationships between temperature, moisture and seven key plant functional traits both across space and over three decades of warming at 117 tundra locations.
View Article and Find Full Text PDFThe arbuscular mycorrhizal (AM) symbiosis is key to plant nutrition, and hence is potentially key in sustainable agriculture. Fertilization and other agricultural practices reduce soil AM fungi and root colonization. Such conditions might promote the evolution of low mycorrhizal responsive crops.
View Article and Find Full Text PDFWe lack both a theoretical framework and solid empirical data to understand domestication impacts on plant chemistry. We hypothesised that domestication increased leaf N and P to support high plant production rates, but biogeographic and climate patterns further influenced the magnitude and direction of changes in specific aspects of chemistry and stoichiometry. To test these hypotheses, we used a data set of leaf C, N and P from 21 herbaceous crops and their wild progenitors.
View Article and Find Full Text PDFOur understanding of domestication comes largely from archeology and genetics. Here, we advocate using current ecological theory and methodologies to provide novel insights into the causes and limitations of evolution under cultivation, as well as into the wider ecological impacts of domestication. We discuss the importance of natural selection under cultivation, that is, the forces promoting differences in Darwinian fitness between plants in crop populations and of constraints, that is, limitations of diverse nature that, given values for trait X, shorten the range of variation of trait Y, during the domestication process.
View Article and Find Full Text PDFBackground And Aims: Leaf gas exchange is influenced by stomatal size, density, distribution between the leaf adaxial and abaxial sides, as well as by pore dimensions. This study aims to quantify which of these traits mainly underlie genetic differences in operating stomatal conductance (gs) and addresses possible links between anatomical traits and regulation of pore width.
Methods: Stomatal responsiveness to desiccation, gs-related anatomical traits of each leaf side and estimated gs (based on these traits) were determined for 54 introgression lines (ILs) generated by introgressing segments of Solanum pennelli into the S.
Background: Lipophilic antioxidants play dual key roles in edible seeds (i) as preservatives of cell integrity and seed viability by preventing the oxidation of fats, and (ii) as essential nutrients for human and animal life stock. It has been well documented that plant domestication and post-domestication evolution frequently resulted in increased seed size and palatability, and reduced seed dormancy. Nevertheless, and surprisingly, it is poorly understood how agricultural selection and cultivation affected the physiological fitness and the nutritional quality of seeds.
View Article and Find Full Text PDFTrait-based ecology predicts that evolution in high-resource agricultural environments should select for suites of traits that enable fast resource acquisition and rapid canopy closure. However, crop breeding targets specific agronomic attributes rather than broad trait syndromes. Breeding for specific traits, together with evolution in high-resource environments, might lead to reduced phenotypic integration, according to predictions from the ecological literature.
View Article and Find Full Text PDFStomata are the major gates regulating substrate availability for photosynthesis and water loss. Although both processes are critical to yield and to resource-use efficiency, we lack a comprehensive picture on how domestication and further breeding have impacted on leaf stomata. To fill this gap, stomatal sizes and densities were screened in cultivated and wild ancestor representatives of a uniquely large group of 24 herbaceous crops.
View Article and Find Full Text PDFDomestication took plants from natural environments to agro-ecosystems, where resources are generally plentiful and plant life is better buffered against environmental risks such as drought or pathogens. We hypothesized that predictions derived from the comparison of low vs high resource ecosystems (faster-growing plants promoting faster nutrient cycling in the latter) extrapolate to the process of domestication. We conducted the first comprehensive assessment of the consequences of domestication on litter quality and key biogeochemical processes by comparing 24 domesticated crops against their closest wild ancestors.
View Article and Find Full Text PDFBackground And Aims: Research on the ability of plants to recognize kin and modify plant development to ameliorate competition with coexisting relatives is an area of very active current exploration. Empirical evidence, however, is insufficient to provide a sound picture of this phenomenon.
Methods: An experiment was designed to assess multi-trait phenotypic expression in response to competition with conspecifics of varied degrees of genealogical relatedness.
Premise Of The Study: In spite of its relevance, we lack rigorous evidence on whether widespread species are superior local competitors compared with coexisting narrowly distributed congeners. We ran a competition experiment between two lupins that coexist at their shared geographic range: Lupinus angustifolius L. (widespread) and L.
View Article and Find Full Text PDFBackground And Aims: Despite long-held interest, knowledge on why leaf size varies widely among species is still incomplete. This study was conducted to assess whether abiotic factors, phylogenetic histories and multi-trait interactions act together to shape leaf size.
Methods: Fifty-seven pairs of altitudinal vicariant species were selected in northern Spain, and leaf area and a number of functionally related leaf, shoot and whole plant traits were measured for each pair.