A software-defined optical receiver is implemented on an off-the-shelf commercial graphics processing unit (GPU). The receiver provides real-time signal processing functionality to process 1 GBaud minimum phase (MP) 4-, 8-, 16-, 32-, 64-, 128-ary quadrature amplitude modulation (QAM) as well as geometrically shaped (GS) 8- and 128-QAM signals using Kramers-Kronig (KK) coherent detection. Experimental validation of this receiver over a 91 km field-deployed optical fiber link between two Tokyo locations is shown with detailed optical signal-to-noise ratio (OSNR) investigations.
View Article and Find Full Text PDFThis work demonstrates the use of bidirectional Raman amplification to achieve an unrepeatered 234 km link using standard single mode fibers and with a capacity×distance product of 21.132 Pb/s·km. A throughput above 90 Tb/s is achieved with an 87 nm wavelength-division multiplexed signal carrying 424 PDM-64QAM signals at 24.
View Article and Find Full Text PDFWe investigate optical transmission of an ultra-wideband signal in a standard single mode fiber. Using a near continuous optical bandwidth exceeding 157 nm across the S-, C- and L-bands, we combine doped-fiber amplifiers covering S, C and L-bands with distributed Raman amplification to enable high-quality transmission of polarization division multiplexed (PDM)-256-quadrature-amplitude modulation (QAM) signals over a 54 km standard single-mode fiber. We receive 793 × 24.
View Article and Find Full Text PDFData rates in optical fiber networks have increased exponentially over the past decades and core-networks are expected to operate in the peta-bit-per-second regime by 2030. As current single-mode fiber-based transmission systems are reaching their capacity limits, space-division multiplexing has been investigated as a means to increase the per-fiber capacity. Of all space-division multiplexing fibers proposed to date, multi-mode fibers have the highest spatial channel density, as signals traveling in orthogonal fiber modes share the same fiber-core.
View Article and Find Full Text PDFThis work compares the random time-varying crosstalk in homogeneous multi-core fibers measured using different types of light sources with linewidths ranging from 100 Hz to 2.5 MHz. We show that the frequency stability of the light source plays a significant role on the quality of short-term average crosstalk measurements with no observable impact from laser linewidth.
View Article and Find Full Text PDFMaster-slave carrier recovery is a digital signal processing technique that uses correlated phase noise in multi-channel receivers to eliminate redundant carrier recovery blocks. In this paper we experimentally investigate the performance of master-slave carrier recovery for multicore fiber transmission in the presence of inter-channel nonlinear interference. Using a triple parallel loop setup we jointly receive three spatial channels in a 7-core fiber for transmission distances of up to 1600 km.
View Article and Find Full Text PDFWe propose and evaluate the use of spatial-division multiplexing (SDM) multiple input multiple output (MIMO) systems to support long distance transmission using single-mode homogeneous multicore fibers. We show that on a uniform link with per-span inter-core skew compensation, the required SDM-MIMO memory length corresponds to the largest inter-core skew per span on the link. Furthermore, we show that with inter-core skew compensation, the required memory length of the SDM-MIMO is nearly constant with the transmission distance for accumulated crosstalk below -11 dB.
View Article and Find Full Text PDFInter-core crosstalk is a potential limitation on the achievable data-rates in optical fiber transmission systems using multi-core fibers. Crosstalk arises from unwanted coupling between cores of a homogenous multi-core fiber and it's average power has been observed to vary over time by 10s of decibels, potentially requiring an additional performance margin to achieve acceptable outage probability. Most investigations of crosstalk have so far only considered continuous wave laser light or amplified spontaneous emission as sources of crosstalk.
View Article and Find Full Text PDFWe experimentally investigate single-parity check (SPC) coded spatial superchannels based on polarization-multiplexed 16-ary quadrature amplitude modulation (PM-16QAM) for multicore fiber transmission systems, using a 7-core fiber. We investigate SPC over 1, 2, 4, 5 or 7 cores in a back-to-back configuration and compare the sensitivity to uncoded PM-16QAM, showing that at symbol rates of 20 Gbaud and at a bit-error-rate (BER) of 10, the SPC superchannels exhibit sensitivity improvements of 2.7 dB, 2.
View Article and Find Full Text PDFWe investigate a high-capacity, space-division-multiplexed (SDM) transmission system using self-homodyne detection (SHD) in multi-core fiber (MCF). We first investigate SHD phase noise cancellation with both kHz and MHz range linewidths for both quadrature-phase shift-keyed (QPSK) and 16 quadrature-amplitude modulation (16QAM) signals, finding that phase noise cancellation in SHD enabled transmission with MHz linewidth lasers that resulted in error floors when using intradyne detection. We then demonstrate a high throughput SHD transmission system using low-cost, MHz linewidth distributed feedback lasers.
View Article and Find Full Text PDFA study of the cross-phase modulation (XPM) degradation of differential-phase-shift-keyed (DPSK) signals due to amplitude-shift-keyed signals is performed using pump-probe simulation. Approximate expressions for the contributions of the XPM-induced intensity and phase modulation to the electrical current fluctuations at the differential-phase-exchange-keyed receiver are presented. It is shown that, unlike prior works and similar to intensity-modulated signals, the contribution of XPM-induced intensity modulation is dominant in systems using standard fiber or high residual dispersion.
View Article and Find Full Text PDFWe propose a novel analytical model for the characterization of fiber cross-phase modulation (XPM) in ultrafast all-optical fiber wavelength converters, operating at modulation frequencies higher than 1 THz. The model is used to compare the XPM frequency limitations of a conventional and a highly nonlinear dispersion shifted fiber (HN-DSF) and a bismuth oxide-based fiber, introducing the XPM bandwidth as a design parameter. It is shown that the HN-DSF presents the highest XPM bandwidth, above 1 THz, making it the most appropriate for ultrafast wavelength conversion.
View Article and Find Full Text PDF