Background: Machine learning (ML) models can yield faster and more accurate medical diagnoses; however, developing ML models is limited by a lack of high-quality labeled training data. Crowdsourced labeling is a potential solution but can be constrained by concerns about label quality.
Objective: This study aims to examine whether a gamified crowdsourcing platform with continuous performance assessment, user feedback, and performance-based incentives could produce expert-quality labels on medical imaging data.
IEEE J Biomed Health Inform
September 2023
Lung ultrasound (LUS) is an important imaging modality used by emergency physicians to assess pulmonary congestion at the patient bedside. B-line artifacts in LUS videos are key findings associated with pulmonary congestion. Not only can the interpretation of LUS be challenging for novice operators, but visual quantification of B-lines remains subject to observer variability.
View Article and Find Full Text PDFAim: Acute decompensated heart failure (ADHF) is the leading cause of cardiovascular hospitalizations in the United States. Detecting B-lines through lung ultrasound (LUS) can enhance clinicians' prognostic and diagnostic capabilities. Artificial intelligence/machine learning (AI/ML)-based automated guidance systems may allow novice users to apply LUS to clinical care.
View Article and Find Full Text PDFCorneal thickness (pachymetry) maps can be used to monitor restoration of corneal endothelial function, for example after Descemet's membrane endothelial keratoplasty (DMEK). Automated delineation of the corneal interfaces in anterior segment optical coherence tomography (AS-OCT) can be challenging for corneas that are irregularly shaped due to pathology, or as a consequence of surgery, leading to incorrect thickness measurements. In this research, deep learning is used to automatically delineate the corneal interfaces and measure corneal thickness with high accuracy in post-DMEK AS-OCT B-scans.
View Article and Find Full Text PDF