Publications by authors named "Ruben Khachatryan"

Measured diffuse X-ray scattering data for a `smooth' as well as for a `rough' silicon sample were fit to theoretical expressions within the distorted wave Born approximation (DWBA). Data for the power spectral density (PSD) for both samples were also obtained by means of atomic force microscopy and optical interferometry. The Fourier transforms of trial correlation functions were fit to the PSD data and then applied to the DWBA formalism.

View Article and Find Full Text PDF

Resonant inelastic X-ray scattering (RIXS) experiments require special sets of near-backscattering spherical diced analyzers and high-resolution monochromators for every distinct absorption-edge energy and emission line. For the purpose of aiding the design and planning of efficient RIXS experiments, comprehensive lists of suitable analyzer reflections for silicon, germanium, α-quartz, sapphire and lithium niobate crystals were compiled for a multitude of absorption edges and emission lines. Analyzers made from lithium niobate, sapphire or α-quartz offer many choices of reflections with intrinsic resolutions currently unattainable from silicon or germanium.

View Article and Find Full Text PDF

We report on design and performance of a high-resolution x-ray monochromator with a spectral bandwidth of ΔE(X) ≃ 1.5 meV, which operates at x-ray energies in the vicinity of the backscattering (Bragg) energy E(H) = 13.903 keV of the (008) reflection in diamond.

View Article and Find Full Text PDF

The first test of nanoscale-focusing Kirkpatrick-Baez (KB) mirrors in the nested (or Montel) configuration used at a hard X-ray synchrotron beamline is reported. The two mirrors are both 40 mm long and coated with Pt to produce a focal length of 60 mm at 3 mrad incident angle, and collect up to a 120 µm by 120 µm incident X-ray beam with maximum angular acceptance of 2 mrad and a broad bandwidth of energies up to 30 keV. In an initial test a focal spot of about 150 nm in both horizontal and vertical directions was achieved with either polychromatic or monochromatic beam.

View Article and Find Full Text PDF

We report a process to fabricate multilayer Laue lenses (MLL's) by sectioning and thinning multilayer films. This method can produce a linear zone plate structure with a very large ratio of zone depth to width (e.g.

View Article and Find Full Text PDF