Publications by authors named "Ruben Juanes"

The soft part of the Earth's surface - the ground beneath our feet - constitutes the basis for life and natural resources, yet a general physical understanding of the ground is still lacking. In this critical time of climate change, cross-pollination of scientific approaches is urgently needed to better understand the behavior of our planet's surface. The major topics in current research in this area cross different disciplines, spanning geosciences, and various aspects of engineering, material sciences, physics, chemistry, and biology.

View Article and Find Full Text PDF

Granular media constitute the most abundant form of solid matter on Earth and beyond. When external forces are applied to a granular medium, the forces are transmitted through it via chains of contacts among grains-force chains. Understanding the spatial structure and temporal evolution of force chains constitutes a fundamental goal of granular mechanics.

View Article and Find Full Text PDF

We study fluid-induced deformation and fracture of cohesive granular media, and apply photoporomechanics to uncover the underpinning grain-scale mechanics. We fabricate photoelastic spherical particles of diameter = 2 mm, and make a monolayer granular pack with tunable intergranular cohesion in a circular Hele-Shaw cell that is initially filled with viscous silicone oil. We inject water into the oil-filled photoelastic granular pack, varying the injection flow rate, defending-fluid viscosity, and intergranular cohesion.

View Article and Find Full Text PDF

Immiscible fluid-fluid displacement in confined geometries is a fundamental process occurring in many natural phenomena and technological applications, from geological CO sequestration to microfluidics. Due to the interactions between the fluids and the solid walls, fluid invasion undergoes a wetting transition from complete displacement at low displacement rates to leaving a film of the defending fluid on the confining surfaces at high displacement rates. While most real surfaces are rough, fundamental questions remain about the type of fluid-fluid displacement that can emerge in a confined, rough geometry.

View Article and Find Full Text PDF

Transitioning our society to a sustainable future, with low or net-zero carbon emissions to the atmosphere, will require a wide-spread transformation of energy and environmental technologies. In this perspective article, we describe how lab-on-a-chip (LoC) systems can help address this challenge by providing insight into the fundamental physical and geochemical processes underlying new technologies critical to this transition, and developing the new processes and materials required. We focus on six areas: (I) subsurface carbon sequestration, (II) subsurface hydrogen storage, (III) geothermal energy extraction, (IV) bioenergy, (V) recovering critical materials, and (VI) water filtration and remediation.

View Article and Find Full Text PDF

We study the collapse and expansion of a cavitation bubble in a deformable porous medium. We develop a continuum-scale model that couples compressible fluid flow in the pore network with the elastic response of a solid skeleton. Under the assumption of spherical symmetry, our model can be reduced to an ordinary differential equation that extends the Rayleigh-Plesset equation to bubbles in soft porous media.

View Article and Find Full Text PDF

There is growing concern about seismicity triggered by human activities, whereby small increases in stress bring tectonically loaded faults to failure. Examples of such activities include mining, impoundment of water, stimulation of geothermal fields, extraction of hydrocarbons and water, and the injection of water, CO and methane into subsurface reservoirs. In the absence of sufficient information to understand and control the processes that trigger earthquakes, authorities have set up empirical regulatory monitoring-based frameworks with varying degrees of success.

View Article and Find Full Text PDF

Viscous environments are ubiquitous in nature and in engineering applications, from mucus in lungs to oil recovery strategies in the earth's subsurface - and in all these environments, bacteria also thrive. The behavior of bacteria in viscous environments has been investigated for a single bacterium, but not for active suspensions. Dense populations of pusher-type bacteria are known to create superfluidic regimes where the effective viscosity of the entire suspension is reduced through collective motion, and the main purpose of this study is to investigate how a viscous environment will affect this behavior.

View Article and Find Full Text PDF

Widespread seafloor methane venting has been reported in many regions of the world oceans in the past decade. Identifying and quantifying where and how much methane is being released into the ocean remains a major challenge and a critical gap in assessing the global carbon budget and predicting future climate [C. Ruppel, J.

View Article and Find Full Text PDF

Understanding the physical mechanisms that underpin the link between fluid injection and seismicity is essential in efforts to mitigate the seismic risk associated with subsurface technologies. To that end, here we develop a poroelastic model of earthquake nucleation based on rate-and-state friction in the manner of spring-sliders, and analyze conditions for the emergence of stick-slip frictional instability-the mechanism for earthquakes-by carrying out a linear stability analysis and nonlinear simulations. We find that the likelihood of triggering earthquakes depends largely on the rate of increase in pore pressure rather than its magnitude.

View Article and Find Full Text PDF

The risk for a global transmission of flu-type viruses is strengthened by the physical contact between humans and accelerated through individual mobility patterns. The Air Transportation System plays a critical role in such transmissions because it is responsible for fast and long-range human travel, while its building components-the airports-are crowded, confined areas with usually poor hygiene. Centers for Disease Control and Prevention (CDC) and World Health Organization (WHO) consider hand hygiene as the most efficient and cost-effective way to limit disease propagation.

View Article and Find Full Text PDF
Article Synopsis
  • Multiphase flows in porous media are crucial for various natural and industrial processes, driving interest in advanced pore-scale modeling techniques.
  • Recent developments in these models, including lattice Boltzmann and phase-field methods, have outpaced quantitative comparisons between them and real experimental data.
  • The study benchmarks 14 state-of-the-art models using microfluidic experiments, revealing that no single model is best for all scenarios, particularly facing challenges with thin films and corner flow.
View Article and Find Full Text PDF

The pinch-off of a bubble is an example of the formation of a singularity, exhibiting a characteristic separation of length and time scales. Because of this scale separation, one expects universal dynamics that collapse into self-similar behavior determined by the relative importance of viscous, inertial, and capillary forces. Surprisingly, however, the pinch-off of a bubble in a large tank of viscous liquid is known to be nonuniversal.

View Article and Find Full Text PDF

Wettability, or preferential affinity of a fluid to a solid substrate in the presence of another fluid, plays a critical role in the statics and dynamics of fluid-fluid displacement in porous media. The complex confined geometry of porous media, however, makes upscaling of microscopic wettability to the macroscale a nontrivial task. Here, we elucidate the contribution of pore geometry in controlling the apparent wettability characteristics of a porous medium.

View Article and Find Full Text PDF

We develop a continuum-scale phase-field model to study gas-liquid-hydrate systems far from thermodynamic equilibrium. We design a Gibbs free energy functional for methane-water mixtures that recovers the isobaric temperature-composition phase diagram under thermodynamic equilibrium conditions. The proposed free energy is incorporated into a phase-field model to study the dynamics of hydrate formation on a gas-liquid interface.

View Article and Find Full Text PDF

Pore fluid pressure in a fault zone can be altered by natural processes (e.g., mineral dehydration and thermal pressurization) and industrial operations involving subsurface fluid injection and extraction for the development of energy and water resources.

View Article and Find Full Text PDF

Immiscible fluid-fluid displacement in partial wetting continues to challenge our microscopic and macroscopic descriptions. Here, we study the displacement of a viscous fluid by a less viscous fluid in a circular capillary tube in the partial wetting regime. In contrast with the classic results for complete wetting, we show that the presence of a moving contact line induces a wetting transition at a critical capillary number that is contact angle dependent.

View Article and Find Full Text PDF

Durotaxis refers to cell motion directed by stiffness gradients of an underlying substrate. Recent work has shown that droplets also move spontaneously along stiffness gradients through a process reminiscent of durotaxis. Wetting droplets, however, move toward softer substrates, an observation seemingly at odds with cell motion.

View Article and Find Full Text PDF

We study the evolution of binary mixtures far from equilibrium, and show that the interplay between phase separation and hydrodynamic instability can arrest the Ostwald ripening process characteristic of nonflowing mixtures. We describe a model binary system in a Hele-Shaw cell using a phase-field approach with explicit dependence of both phase fraction and mass concentration. When the viscosity contrast between phases is large (as is the case for gas and liquid phases), an imposed background flow leads to viscous fingering, phase branching, and pinch off.

View Article and Find Full Text PDF

Multiphase flow in porous media is important in many natural and industrial processes, including geologic CO2 sequestration, enhanced oil recovery, and water infiltration into soil. Although it is well known that the wetting properties of porous media can vary drastically depending on the type of media and pore fluids, the effect of wettability on multiphase flow continues to challenge our microscopic and macroscopic descriptions. Here, we study the impact of wettability on viscously unfavorable fluid-fluid displacement in disordered media by means of high-resolution imaging in microfluidic flow cells patterned with vertical posts.

View Article and Find Full Text PDF

Self-organization and pattern formation in network-organized systems emerges from the collective activation and interaction of many interconnected units. A striking feature of these non-equilibrium structures is that they are often localized and robust: only a small subset of the nodes, or cell assembly, is activated. Understanding the role of cell assemblies as basic functional units in neural networks and socio-technical systems emerges as a fundamental challenge in network theory.

View Article and Find Full Text PDF

We study experimentally the miscible radial displacement of a more viscous fluid by a less viscous one in a horizontal Hele-Shaw cell. For the range of tested injection rates and viscosity ratios we observe two regimes for the evolution of the fluid-fluid interface. At early times the interface length increases linearly with time, which is typical of the Saffman-Taylor instability for this radial configuration.

View Article and Find Full Text PDF

We investigate transport on regular fracture networks that are characterized by heterogeneity in hydraulic conductivity. We discuss the impact of conductivity heterogeneity and mixing within fracture intersections on particle spreading. We show the emergence of non-Fickian transport due to the interplay between the network conductivity heterogeneity and the degree of mixing at nodes.

View Article and Find Full Text PDF

When a liquid touches a solid surface, it spreads to minimize the system's energy. The classic thin-film model describes the spreading as an interplay between gravity, capillarity, and viscous forces, but it cannot see an end to this process as it does not account for the nonhydrodynamic liquid-solid interactions. While these interactions are important only close to the contact line, where the liquid, solid, and gas meet, they have macroscopic implications: in the partial-wetting regime, a liquid puddle ultimately stops spreading.

View Article and Find Full Text PDF

We develop a framework that casts the point water-vegetation dynamics under stochastic rainfall forcing as a continuous-time random walk (CTRW), which yields an evolution equation for the joint probability density function (PDF) of soil-moisture and biomass. We find regime shifts in the steady-state PDF as a consequence of changes in the rainfall structure, which flips the relative strengths of the system attractors, even for the same mean precipitation. Through an effective potential, we quantify the impact of rainfall variability on ecosystem resilience and conclude that amplified rainfall regimes reduce the resilience of water-stressed ecosystems, even if the mean annual precipitation remains constant.

View Article and Find Full Text PDF