Publications by authors named "Ruben Hamans"

Silver nanowires are used in many applications, ranging from transparent conductive layers to Raman substrates and sensors. Their performance often relies on their unique optical properties that emerge from localized surface plasmon resonances in the ultraviolet. To tailor the nanowire geometry for a specific application, a correct understanding of the relationship between the wire's structure and its optical properties is therefore necessary.

View Article and Find Full Text PDF

Plasmonic nanoparticles have recently emerged as promising photocatalysts for light-driven chemical conversions. Their illumination results in the generation of highly energetic charge carriers, elevated surface temperatures, and enhanced electromagnetic fields. Distinguishing between these often-overlapping processes is of paramount importance for the rational design of future plasmonic photocatalysts.

View Article and Find Full Text PDF

Plasmonic nanoparticles have recently emerged as a promising platform for photocatalysis thanks to their ability to efficiently harvest and convert light into highly energetic charge carriers and heat. The catalytic properties of metallic nanoparticles, however, are typically measured in ensemble experiments. These measurements, while providing statistically significant information, often mask the intrinsic heterogeneity of the catalyst particles and their individual dynamic behavior.

View Article and Find Full Text PDF

Silver nanowires (AgNWs) combine high electrical conductivity with low light extinction in the visible and are used in a wide range of applications, from transparent electrodes, to temperature and pressure sensors. The most common strategy for the production of AgNWs is the polyol synthesis, which always leads to the formation of silver nanoparticles as byproducts. These nanoparticles degrade the performance of AgNWs' based devices and have to be eliminated by several purification steps.

View Article and Find Full Text PDF

Plasmonic particle arrays have remarkable optical properties originating from their collective behavior, which results in resonances with narrow line widths and enhanced electric fields extending far into the surrounding medium. Such resonances can be exploited for applications in strong light-matter coupling, sensing, light harvesting, nonlinear nanophotonics, lasing, and solid-state lighting. However, as the lattice constants associated with plasmonic particle arrays are on the order of their resonance wavelengths, mapping the interaction between point dipoles and plasmonic particle arrays cannot be done with diffraction-limited methods.

View Article and Find Full Text PDF

Three-dimensional magnetic nanostructures hold great potential to revolutionize information technologies and to enable the study of novel physical phenomena. In this work, we describe a hybrid nanofabrication process combining bottom-up 3D nano-printing and top-down thin film deposition, which leads to the fabrication of complex magnetic nanostructures suitable for the study of new 3D magnetic effects. First, a non-magnetic 3D scaffold is nano-printed using Focused Electron Beam Induced Deposition; then a thin film magnetic material is thermally evaporated onto the scaffold, leading to a functional 3D magnetic nanostructure.

View Article and Find Full Text PDF

Three-dimensional (3D) nanomagnetic devices are attracting significant interest due to their potential for computing, sensing, and biological applications. However, their implementation faces great challenges regarding fabrication and characterization of 3D nanostructures. Here, we show a 3D nanomagnetic system created by 3D nanoprinting and physical vapor deposition, which acts as a conduit for domain walls.

View Article and Find Full Text PDF