Publications by authors named "Ruben Goeminne"

Reticular materials rely on a unique building concept where inorganic and organic building units are stitched together giving access to an almost limitless number of structured ordered porous materials. Given the versatility of chemical elements, underlying nets, and topologies, reticular materials provide a unique platform to design materials for timely technological applications. Reticular materials have now found their way in important societal applications, like carbon capture to address climate change, water harvesting to extract atmospheric moisture in arid environments, and clean energy applications.

View Article and Find Full Text PDF

The intricate hydrogen-bonded network of water gives rise to various structures with anomalous properties at different thermodynamic conditions. Nanoconfinement can further modify the water structure and properties, and induce specific water motifs, which are instrumental for technological applications such as atmospheric water harvesting. However, so far, a causal relationship between nanoconfinement and the presence of specific hydrophilic adsorption sites is lacking, hampering the further design of nanostructured materials for water templating.

View Article and Find Full Text PDF

Nanoporous materials in the form of metal-organic frameworks such as zeolitic imidazolate framework-8 (ZIF-8) are promising membrane materials for the separation of hydrocarbon mixtures. To compute the adsorption isotherms in such adsorbents, grand canonical Monte Carlo simulations have proven to be very useful. The quality of these isotherms depends on the accuracy of adsorbate-adsorbent interactions, which are mostly described using force fields owing to their low computational cost.

View Article and Find Full Text PDF

In 2021, Svante, in collaboration with BASF, reported successful scale up of CALF-20 production, a stable MOF with high capacity for post-combustion CO capture which exhibits remarkable stability towards water. CALF-20's success story in the MOF commercialisation space provides new thinking about appropriate structural and adsorptive metrics important for CO capture. Here, we combine atomistic-level simulations with experiments to study adsorptive properties of CALF-20 and shed light on its flexible crystal structure.

View Article and Find Full Text PDF

Nanoporous materials such as metal-organic frameworks (MOFs) have been extensively studied for their potential for adsorption and separation applications. In this respect, grand canonical Monte Carlo (GCMC) simulations have become a well-established tool for computational screenings of the adsorption properties of large sets of MOFs. However, their reliance on empirical force field potentials has limited the accuracy with which this tool can be applied to MOFs with challenging chemical environments such as open-metal sites.

View Article and Find Full Text PDF

Proton hopping is a key reactive process within zeolite catalysis. However, the accurate determination of its kinetics poses major challenges both for theoreticians and experimentalists. Nuclear quantum effects (NQEs) are known to influence the structure and dynamics of protons, but their rigorous inclusion through the path integral molecular dynamics (PIMD) formalism was so far beyond reach for zeolite catalyzed processes due to the excessive computational cost of evaluating all forces and energies at the Density Functional Theory (DFT) level.

View Article and Find Full Text PDF
Article Synopsis
  • New nanoporous materials, especially those with adaptive cavities, show great potential in improving adsorption and separation processes, with unique behaviors like negative gas adsorption (NGA).
  • Although the underlying thermodynamics of these unusual adsorption behaviors have been explored, many experimental results still lack clear explanations, indicating a need for deeper analysis.
  • The study's development of a comprehensive thermodynamic landscape for methane adsorption on DUT-49 successfully explains observed structural changes and behaviors, offering valuable insights that could reshape our understanding of gas adsorption in various materials.
View Article and Find Full Text PDF