Background: Surface tension passive pumping is a way to actuate flow without the need for pumps, tubing or valves by using the pressure inside small drop to move liquid via a microfluidic channel. These types of tubeless devices have typically been used in cell biology. Herein we present the use of tubeless devices as a fluid exchange platform for patch clamp electrophysiology.
View Article and Find Full Text PDFAdvancements in microfabrication technology have lead to the development of planar micro-pore electroporation technology. This technology has been shown to provide greater control in single cell manipulation, and electroporation which is independent from cell size. In this work we report direct and spatially resolved characterization of electric currents within a planar micropore electroporation biochip to better understand this phenomenon at the cellular level.
View Article and Find Full Text PDFMicro and nano fabrication techniques have facilitated the production of new devices for manipulation of single cells on a chip, such as the planar micro-pore electroporation technology. To characterize this technology we have studied the seal that forms at the interface between an individual cell and the micro-pore, in which the cell normally resides, as a function of an electrical field applied across the cell and temperature. Mathematical analysis of non-electroporative electrical fields in experiments with Madin-Darby canine kidney (MDCK) cells suggests that nanoscale channels form between the exterior of the cell and the pore wall.
View Article and Find Full Text PDF