Publications by authors named "Ruben De Man"

Age prediction based on single cell RNA-Sequencing data (scRNA-Seq) can provide information for patients' susceptibility to various diseases and conditions. In addition, such analysis can be used to identify aging related genes and pathways. To enable age prediction based on scRNA-Seq data, we developed PolyEN, a new regression model which learns continuous representation for expression over time.

View Article and Find Full Text PDF

Age is a major risk factor for lung disease. To understand the mechanisms underlying this association, we characterized the changing cellular, genomic, transcriptional, and epigenetic landscape of lung aging using bulk and single-cell RNAseq (scRNAseq) data. Our analysis revealed age-associated gene networks that reflected hallmarks of aging, including mitochondrial dysfunction, inflammation, and cellular senescence.

View Article and Find Full Text PDF

Known for its high morbidity and mortality rates, lung cancer poses a significant threat to human health and well-being. However, the same population is also at high risk for other deadly diseases, such as cardiovascular disease. Since Low-Dose CT (LDCT) has been shown to significantly improve the lung cancer diagnosis accuracy, it will be very useful for clinical practice to predict the all-cause mortality for lung cancer patients to take corresponding actions.

View Article and Find Full Text PDF

Detection and characterization of abnormalities in clinical imaging are of utmost importance for patient diagnosis and treatment. We present a comparison of convolutional neural network (CNN) and human observer performance on a simulated lesion detection and characterization task. We apply both conventional performance metrics, including accuracy and nonconventional metrics such as lift charts to perform qualitative and quantitative comparisons of each type of observer.

View Article and Find Full Text PDF

We hypothesized that severity of coronary artery calcification (CAC), emphysema, muscle mass, and fat attenuation can help predict mortality in patients with lung cancer participating in the National Lung Screening Trial (NLST). Following regulatory approval from the Cancer Data Access System (CDAS), all patients diagnosed with lung cancer at the time of the screening study were identified. These subjects were classified into two groups: survivors and nonsurvivors at the conclusion of the NLST trial.

View Article and Find Full Text PDF