Publications by authors named "Ruben D Ponce Wong"

Traumatic brain injury (TBI) is the leading cause of accident-related death and disability in the world and can lead to long-term neuropsychiatric symptoms, such as a decline in cognitive function and neurodegeneration. TBI includes primary and secondary injury, with head trauma and deformation of the brain caused by the physical force of the impact as primary injury, and cellular and molecular cascades that lead to cell death as secondary injury. Currently, there is no treatment for TBI-induced cell damage and neural circuit dysfunction in the brain, and thus, it is important to understand the underlying cellular mechanisms that lead to cell damage.

View Article and Find Full Text PDF

The prevalence of cardiovascular risk factors is expected to increase the occurrence of cardiovascular diseases (CVDs) worldwide. Cardiac organoids are promising candidates for bridging the gap between experimentation and translational applications in drug development and cardiac repair due to their attractive features. Here we present the fabrication and characterization of isogenic scaffold-free cardiac organoids derived from human induced pluripotent stem cells (hiPSCs) formed under a supplement-deprivation regimen that allows for metabolic synchronization and maturation of hiPSC-derived cardiac cells.

View Article and Find Full Text PDF

Objective: Brain-Machine Interfaces (BMIs) hold great promises for advancing neuroprosthetics, robotics, and for providing treatment options for severe neurological diseases. The objective of this work is the development and in vivo evaluation of electrodes for BMIs that meet the needs to record brain activity at sub-millimeter resolution over a large area of the cortex while being soft and electromechanically robust (i.e.

View Article and Find Full Text PDF

The addition of tactile and proprioceptive feedback to neuroprosthetic limbs is expected to significantly improve the control of these devices. Intracortical microstimulation (ICMS) of somatosensory cortex is a promising method of delivering this sensory feedback. To date, the main focus of somatosensory ICMS studies has been to deliver discriminable signals, corresponding to varying intensity, to a single location in cortex.

View Article and Find Full Text PDF

Upper-limb amputees rely primarily on visual feedback when using their prostheses to interact with others or objects in their environment. A constant reliance upon visual feedback can be mentally exhausting and does not suffice for many activities when line-of-sight is unavailable. Upper-limb amputees could greatly benefit from the ability to perceive edges, one of the most salient features of 3D shape, through touch alone.

View Article and Find Full Text PDF