In this contribution we demonstrate a solid-state approach to triplet-triplet annihilation upconversion for application in a solar cell device in which absorption of near-infrared light is followed by direct electron injection into an inorganic substrate. We use time-resolved microwave photoconductivity experiments to study the injection of electrons into the electron-accepting substrate (TiO) in a trilayer device consisting of a triplet sensitizer (fluorinated zinc phthalocyanine), triplet acceptor (methyl subsituted perylenediimide), and smooth polycrystalline TiO. Absorption of light at 700 nm leads to the almost quantitative generation of triplet excited states by intersystem crossing.
View Article and Find Full Text PDFThermal annealing of thin films of CdSe/CdS core/shell quantum dots induces superordering of the nanocrystals and a significant reduction of the interparticle spacing. This results in a drastic enhancement of the quantum yield for charge carrier photogeneration and the charge carrier mobility. The mobile electrons have a mobility as high as 0.
View Article and Find Full Text PDFTetrahedral naphthalenediimide compound 1 has been synthesized as an example of a new class of amorphous n-type materials, in which the nondirectionality obtained by its shape is decoupled from its optoelectronic properties. 1 forms bicontinuous films with p-type polymers and effectively quenches the excited state, yielding long-lived mobile charge carriers on pulsed illumination.
View Article and Find Full Text PDF