Publications by authors named "Ruben Aylwin"

Multilayered diffraction gratings are an essential component in many optical devices due to their ability to engineer light. We propose a first-order optimization strategy to maximize diffraction efficiencies of such structures by a fast approximation of the underlying boundary integral equations for polarized electromagnetic fields. A parametric representation of the structure interfaces via trigonometric functions enables the problem to be set as a parametric optimization one while efficiently representing complex structures.

View Article and Find Full Text PDF

This work presents the implementation, numerical examples, and experimental convergence study of first- and second-order optimization methods applied to one-dimensional periodic gratings. Through boundary integral equations and shape derivatives, the profile of a grating is optimized such that it maximizes the diffraction efficiency for given diffraction modes for transverse electric polarization. We provide a thorough comparison of three different optimization methods: a first-order method (gradient descent); a second-order approach based on a Newton iteration, where the usual Newton step is replaced by taking the absolute value of the eigenvalues given by the spectral decomposition of the Hessian matrix to deal with non-convexity; and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, a quasi-Newton method.

View Article and Find Full Text PDF