Publications by authors named "Rubem L Sommer"

Background: A novel virulent bacteriophage infecting phytobacteria Pseudomonas cichorii (P. cichorii) was isolated from leafy vegetables in Brazil. P.

View Article and Find Full Text PDF

We present a proof of principle for the validity of the functional renormalization group, by measuring the force correlations in Barkhausen-noise experiments. Our samples are soft ferromagnets in two distinct universality classes, differing in the range of spin interactions, and the effects of eddy currents. We show that the force correlations have a universal form predicted by the functional renormalization group, distinct for short-range and long-range elasticity, and mostly independent of eddy currents.

View Article and Find Full Text PDF

This manuscript reports room-temperature one-step synthesis of earth-abundant semiconductor ZnSiN on amorphous carbon substrates using radio frequency reactive magnetron co-sputtering. Transmission Electron Microscopy and Rutherford Backscattering Spectrometry analysis demonstrated that the synthesis has occurred as ZnSiN nanocrystals in the orthorhombic phase, uniformly distributed on amorphous carbon. The technique of large-area deposition on an amorphous substrate can be interesting for flexible electronics technologies.

View Article and Find Full Text PDF

Many complex systems, from earthquakes and financial markets to Barkhausen effect in ferromagnetic materials, respond with a noise consisting of discrete avalanche-like events with broad range of sizes and durations, separated by waiting times. Here we focus on the waiting-time statistics in magnetic systems. By investigating the Barkhausen noise in amorphous and polycrystalline ferromagnetic films having different thicknesses, we uncover the form of the waiting-time distribution in time series recorded from the irregular and irreversible motion of magnetic domain walls.

View Article and Find Full Text PDF

Many systems crackle, from earthquakes and financial markets to Barkhausen effect in ferromagnetic materials. Despite the diversity in essence, the noise emitted in these dynamical systems consists of avalanche-like events with broad range of sizes and durations, characterized by power-law avalanche distributions and typical average avalanche shape that are fingerprints describing the universality class of the underlying avalanche dynamics. Here we focus on the crackling noise in ferromagnets and scrutinize the traditional statistics of Barkhausen avalanches in polycrystalline and amorphous ferromagnetic films having different thicknesses.

View Article and Find Full Text PDF

We investigate the scaling behavior in the statistical properties of Barkhausen noise in ferromagnetic films. We apply the statistical treatment usually employed for bulk materials in experimental Barkhausen noise time series measured with the traditional inductive technique in polycrystalline ferromagnetic films having different thickness from 100 to 1000 nm and determine the scaling exponents. Based on this procedure, we group the samples in a single universality class, since the scaling behavior of Barkhausen avalanches is characterized by exponents τ∼1.

View Article and Find Full Text PDF