This study assessed the potential for minimizing human excreta bound phosphorus (P) loss through used disposable baby nappies, an area that remained unexplored for nations. Accordingly, it performed a substance flow analysis to assess the national P loss through used disposable baby nappies in the case of Australia. The analysis revealed that approximately 308 tonne P is lost through used baby nappies to landfills in Australia in 2019, which is nearly 2.
View Article and Find Full Text PDFThe COVID-19 pandemic has abruptly halted the Anthropocene's ever-expanding reign for the time being. The resulting global human confinement, dubbed as the Anthropause, has created an unprecedented opportunity for us to evaluate the environmental consequences of large-scale changes in anthropogenic activities. Based on a methodical and in-depth review of related literature, this study critically evaluates the positive and negative externalities of COVID-19 induced lockdown on environmental components including air, water, noise, waste, forest, wildlife, and biodiversity.
View Article and Find Full Text PDFAnthropogenic disruption of the global phosphorus (P) cycle has already pushed it beyond the planetary boundary. Understanding P metabolism at global, regional and local scales is critical to close the loop of P for the safekeeping of mankind. Investigating the effects of urbanization-induced income growth on the natural nutrient (especially P) cycles contribute to that end.
View Article and Find Full Text PDFBased on a systematic review of 17 recent substance flow analyses of phosphorus (P) at the regional and country scales, this study presents an assessment of the magnitude of anthropogenic P storage in the agricultural production and the waste management systems to identify the potential for minimizing unnecessary P storage to reduce the input of P as mineral fertilizer and the loss of P. The assessment indicates that in case of all (6) P flow analyses at the regional scale, the combined mass of annual P storage in the agricultural production and the waste management systems is greater than 50 % of the mass of annual P inflow as mineral fertilizer in the agricultural production system, while this is close to or more than 100 % in case of half of these analyses. At the country scale, in case of the majority (7 out of 11) of analyses, the combined mass of annual P storage in the agricultural production and the waste management systems has been found to be roughly equivalent or greater than 100 % of the mass of annual P inflow as mineral fertilizer in the agricultural production system, while it ranged from 30 to 60 % in the remaining analyses.
View Article and Find Full Text PDFAchieving sustainable management of phosphorus (P) is crucial for both global food security and global environmental protection. In order to formulate informed policy measures to overcome existing barriers of achieving sustainable P management, there is need for a sound understanding of the nature and magnitude of P flow through various systems at different geographical and temporal scales. So far, there is a limited understanding on the nature and magnitude of P flow over multiple years at the regional scale.
View Article and Find Full Text PDF