Protein aggregation leads to the transformation of proteins from their soluble form to the insoluble amyloid fibrils and these aggregates get deposited in the specific body tissues, accounting for various diseases. To prevent such an aggregation, organic-inorganic hybrid nanocomposites of iron oxide nanoparticle (NP, ∼6.5-7.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
October 2019
Tissue engineering (TE) is an emerging field where alternate/artificial tissues or organ substitutes are implanted to mimic the functionality of damaged or injured tissues. Earlier efforts were made to develop natural, synthetic, or semisynthetic materials for skin equivalents to treat burns or skin wounds. Nowadays, many more tissues like bone, cardiac, cartilage, heart, liver, cornea, blood vessels, and so forth are being engineered using 3-D biomaterial constructs or scaffolds that could deliver active molecules such as peptides or growth factors.
View Article and Find Full Text PDFIn the modern era, research on the synthesis of nanoparticles (NPs) has been growing exponentially. Due to their small size together with extra-ordinary physico-chemical properties, a variety of NPs i.e.
View Article and Find Full Text PDFThe ever increasing incidences of non-healing skin wounds have paved way for many efforts on the convoluted process of wound healing. Unfortunately, the lack of relevance and success of modern wound dressings in healing of acute and diabetic wounds still remains a matter of huge concern. Here, an in situ three step approach was embraced for the development of nanocomposite (NCs) dressings by impregnating silver nanoparticles (AgNPs) onto a matrix of cellulose nanocrystals (CNCs) isolated from Syzygium cumini leaves using an environmental friendly approach.
View Article and Find Full Text PDFIn diabetes, hyperglycemic state immensely hinders the wound healing. Here, nanobiocomposites (NCs) developed by impregnation of in situ prepared silver nanoparticles in the matrix of bamboo cellulose nanocrystals were investigated for their ability to hasten the progress of healing events in streptozotocin induced diabetic mice model. Wounds treated with topically applied NCs (hydrogels) showed full recovery (98-100%) within 18days post wounding in contrast to the various control groups where incomplete healing (88-92%) was noticed.
View Article and Find Full Text PDFNanocomposites of plant cellulose nanocrystals (CNCs) were developed by binding model proteins BSA and HSA onto CNCs by physical adsorption and chemical conjugation methods The spectroscopy and microscopy studies confirmed the protein binding onto CNCs. Phosphate buffer saline (pH=4.0, 7.
View Article and Find Full Text PDFAn innovative approach was adopted where in situ synthesized silver nanoparticles (AgNPs) from leaf extract mediated reduction of AgNO were simultaneously impregnated into the matrix of cellulose nanocrystals (CNCs) isolated from Dendrocalamus hamiltonii and Bambusa bambos leaves, for formation of nanobiocomposites (NCs) in film and ointment forms. Here, use of plant CNCs was chosen as an alternate to bacterial cellulose for wound dressings. NCs possessing water absorption capacity and strong antibacterial activity showed synergistic effect on in vivo skin wound healing and documented faster and significant wound closure in treated mice.
View Article and Find Full Text PDFIn this study, three plants Populus alba, Hibiscus arboreus and Lantana camara were explored for the synthesis of silver nanoparticles (SNPs). The effect of reaction temperature and leaf extract (LE) concentration of P. alba, H.
View Article and Find Full Text PDFNanoencapsulation of drug/small molecules in nanocarriers (NCs) is a very promising approach for development of nanomedicine. Modern drug encapsulation methods allow efficient loading of drug molecules inside the NCs thereby reducing systemic toxicity associated with drugs. Targeting of NCs can enhance the accumulation of nanonencapsulated drug at the diseased site.
View Article and Find Full Text PDF