Bioinform Biol Insights
September 2024
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that emerged in late 2019 has accumulated a series of point mutations and evolved into several variants of concern (VOCs), some of which are more transmissible and potentially more severe than the original strain. The most notable VOCs are Alpha, Beta, Gamma, Delta, and Omicron, which have spread to various parts of the world. This study conducted surveillance in Jashore, Bangladesh to identify the prevalence of SARS-CoV-2 coinfected with dengue virus and their genomic effect on the emergence of VOCs.
View Article and Find Full Text PDFThe mortality of coronavirus disease 2019 (COVID-19) disease is very high among the elderly or individuals having comorbidities such as obesity, cardiovascular diseases, lung infections, hypertension, and/or diabetes. Our study characterizes the metagenomic features in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-infected patients with or without type 2 diabetes, to identify the microbial interactions associated with its fatal consequences.This study compared the baseline nasopharyngeal microbiome of SARS-CoV-2-infected diabetic and nondiabetic patients with controls adjusted for age and gender.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent of the ongoing pandemic of coronavirus disease 2019 (COVID-19), a public health emergency of international concerns declared by the World Health Organization (WHO). An immuno-informatics approach along with comparative genomics was applied to design a multi-epitope-based peptide vaccine against SARS-CoV-2 combining the antigenic epitopes of the S, M, and E proteins. The tertiary structure was predicted, refined and validated using advanced bioinformatics tools.
View Article and Find Full Text PDFRaw milk contains wide microbial diversity, composed mainly of lactic acid bacteria (LAB), which are used as probiotics in both human and animal husbandry. We isolated, characterized, and evaluated LAB from indigenous Bangladeshi raw milk to assess probiotic potential, including antagonistic activity (against Escherichia coli O157: H7, Enterococcus faecalis, Salmonella Typhimurium, Salmonella Enteritidis, and Listeria monocytogenes), survivability in simulated gastric juice, tolerance to phenol and bile salts, adhesion to ileum epithelial cells, auto- and co-aggregation, hydrophobicity, α-glucosidase inhibitory activity, and antibiotic susceptibility tests. The 4 most promising LAB strains showed probiotic potential and were identified as Lactobacillus casei, Lactobacillus plantarum (which produced plantaricin EF), Lactobacillus fermentum, and Lactobacillus paracasei.
View Article and Find Full Text PDFBackground: Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host, are now accepted as suitable alternatives to antibiotics in the control of animal infections and improving animal production. Lactic acid bacteria (LAB) with remarkable functional properties have been evaluated in different studies as possible probiotic candidates. The purpose of this study was to isolate, characterize and assess the potentials of LAB from poultry gastrointestinal tract as potential poultry probiotics.
View Article and Find Full Text PDF