Background: Schsistosomiasis is endemic in sub-Saharan Africa. It is transmitted by intermediate host snails such as Bulinus and Biomphalaria. An understanding of the abundance and distribution of snail vectors is important in designing control strategies.
View Article and Find Full Text PDFWe investigated how bacterial communities adapted to external resistances and exhibited the performance of electricity production in microbial fuel cells (MFCs) with external resistance of 10 Ω (LR-MFC) and 1000 Ω (HR-MFC). The HR-MFC exhibited better performance than the LR-MFC. The power densities of the LR-MFC and the HR-MFC were 5.
View Article and Find Full Text PDFMicrobial fuel cells equipped with SPEEK-MEA (SPEEK-MFC) and Nafion-MEA (Nafion-MFC) were constructed with organic waste as electron donor and lake sediment as inoculum and were then evaluated comprehensively by electrochemical and microbial analyses. The proton conductivity of SPEEK was several hundreds-fold lower than that of Nafion 117, whereas the oxygen mass and diffusion transfer coefficients of SPEEK were 10-fold lower than those of Nafion 117. It was difficult to predict which was better membrane for MFC based on the feature of membrane.
View Article and Find Full Text PDFThe relationship between the bacterial communities in anolyte and anode biofilms and the electrochemical properties of microbial fuel cells (MFCs) was investigated when a complex organic waste-decomposing solution was continuously supplied to MFCs as an electron donor. The current density increased gradually and was maintained at approximately 100 to 150 mA m(-2). Polarization curve analyses revealed that the maximum power density was 7.
View Article and Find Full Text PDFIt is important for practical use of microbial fuel cells (MFCs) to not only develop electrodes and proton exchange membranes but also to understand the bacterial community structure related to electricity generation. Four lactate fed MFCs equipped with different membrane electrode assemblies (MEAs) were constructed with paddy field soil as inoculum. The MEAs significantly affected the electricity-generating properties of the MFCs.
View Article and Find Full Text PDFWe report the development of microbial populations and changes in their electrochemical production during a 2-month study of a two-chamber microbial fuel cell (MFC). The original inoculum was taken from anaerobic enrichment cultures with soil as the inoculum, and lactate as the exogenous electron donor. Power density (PD), coulombic production (CP), and coulombic efficiency (CE) increased rapidly, reaching high values (320 mW m(-3), 65 Q, and 12.
View Article and Find Full Text PDFThree strains of aerobic chemoorganotrophic naphthalene-degrading bacteria (designated TSY03b(T), TSY04, and TSW01) isolated from sediment of a polychlorinated-dioxin-transforming microcosm were characterized. These strains had Gram-negative-stained, rod-shaped cells measuring 0.6‒0.
View Article and Find Full Text PDF