In an attempt to shed light on how the addition of a benzothiadiazole (BTD) moiety influences the properties of dyes, a series of newly designed triphenylamine-based sensitizers incorporating a BTD unit as an additional electron-withdrawing group in a specific donor-acceptor-π-acceptor architecture has been investigated. We found that different positions of the BTD unit provided significantly different responses for light absorption. Among these, it was established that the further the BTD unit is away from the donor part, the broader the absorption spectra, which is an observation that can be applied to improve light-harvesting ability.
View Article and Find Full Text PDFThe electronic structures and photophysical properties of anthracene derivatives as hole-transporting materials (HTM) in OLEDs have been studied by DFT and TD-DFT methods. Thiophene and triphenylamine (TPA) moieties are used as substituents in anthracene based HTMs providing FATn and FAPn compounds (n=1-2), respectively. The calculated electronic levels by B3LYP show proper energy matching of FAPn and hole-injecting layer (HIL), indicating that the hole-transports of the FAPn compounds are better than the FATn compounds.
View Article and Find Full Text PDF