ACS Chem Neurosci
December 2024
Amyloid β (Aβ) aggregates are implicated in the pathology of several neurodegenerative diseases such as Alzheimer's disease, Huntington's disease, and Parkinson's disease, and damage to membranes is considered one of the pathology-related effects of Aβ. Experiments in vitro indicate that Aβ can damage these membranes; however, such experiments were performed at Aβ concentrations in the micromolar range, several orders above the physiologically relevant conditions. Our studies with Aβ42 in the low nanomolar concentrations did not reveal any damage to the supported lipid bilayer, questioning this membrane damage mechanism of Aβ.
View Article and Find Full Text PDFThe continuous threat of drug-resistant justifies identifying novel targets and developing effective antibacterial agents. A potential target is nicotinate nucleotide adenylyltransferase (NNAT), an indispensable enzyme in the biosynthesis of the cell-dependent metabolite, NAD. NNAT catalyses the adenylation of nicotinamide/nicotinate mononucleotide (NMN/NaMN), using ATP to form nicotinamide/nicotinate adenine dinucleotide (NAD/NaAD).
View Article and Find Full Text PDF