Publications by authors named "Ru-Zhou Zhao"

Acute high-altitude illness seriously threatens the health and lives of people who rapidly ascend to high altitudes, but there is currently no particularly effective method for the prevention or treatment of acute high-altitude illness. In the present study, we found that fasting preconditioning effectively improved the survival rate of rats exposed to a simulated altitude of 7620 m for 24 h, and a novel animal model of rapid adaptation to acute hypoxia was established. Compared with control treatment, fasting preconditioning activated AMPK, induced autophagy, decreased ROS levels, and inhibited NF-κB signaling in the cardiac tissues of rats.

View Article and Find Full Text PDF

Mitochondria are important sites for the production of ATP and the generation of ROS in cells. However, whether acute hypoxia increases ROS generation in cells or affects ATP production remains unclear, and therefore, monitoring the changes in ATP and ROS in living cells in real time is important. In this study, cardiomyocytes were transfected with RoGFP for ROS detection and MitGO-Ateam2 for ATP detection, whereby ROS and ATP production in cardiomyocytes were respectively monitored in real time.

View Article and Find Full Text PDF

The degree and duration of chemical hypoxia induced by sodium dithionite (NaSO) have not been reported. It is not yet clear how much reduction in the O concentration (physical hypoxia) can lead to hypoxia in cultured cardiomyocytes. In this study, oxygen microelectrodes were used to measure changes in the O concentration in media containing different concentrations of NaSO.

View Article and Find Full Text PDF

The mammalian mitochondrial electron transport chain (ETC) includes complexes I‑IV, as well as the electron transporters ubiquinone and cytochrome c. There are two electron transport pathways in the ETC: Complex I/III/IV, with NADH as the substrate and complex II/III/IV, with succinic acid as the substrate. The electron flow is coupled with the generation of a proton gradient across the inner membrane and the energy accumulated in the proton gradient is used by complex V (ATP synthase) to produce ATP.

View Article and Find Full Text PDF