This study evaluated the responses of sweet potatoes to Cadmium (Cd) stress through pot experiments to theoretically substantiate their comprehensive applications in Cd-polluted agricultural land. The experiments included a CK treatment and three Cd stress treatments with 3, 30, and 150 mg/kg concentrations, respectively. We analyzed specified indicators of sweet potato at different growth periods, such as the individual plant growth, photosynthesis, antioxidant capacity, and carbohydrate Cd accumulation distribution.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
January 2024
The dysregulation of glucose-G6P (glucose-6-phosphate) interconversion is thought to be one of the main reasons for the low glucose disposal of carnivorous fish, but is not yet well understood in largemouth bass Micropterus salmoides (LMB). In this study, the full length cDNA sequences of genes encoding glucokinase (Gck, catalyzing glucose phosphorylation) and glucose-6-phosphatase catalytic subunit (G6pc, catalyzing glucose dephosphorylation) were cloned by the RACE method from the liver of LMB. Subsequently, the distribution of g6pc and gck as well as their transcriptional regulation by dietary starch levels and a glucose load were investigated.
View Article and Find Full Text PDFSolar-driven water evaporation is a promising technology of freshwater production to address the water scarcity. However, the photothermal material and the distilled water would be contaminated in the evaporation of wastewater including organic pollutants. In this work, MOF-derived C/TiO composites (carbonized UiO-66-NH (Ti)) with simultaneous photothermal and photocatalytic functions are designed for producing freshwater from sewage.
View Article and Find Full Text PDFRenewable yet biodegradable natural fiber (e.g., cellulose nanofiber (CNF)) reinforced bio-based polymers (e.
View Article and Find Full Text PDFInterfacial thermal resistance is the main barrier restricting the heat dissipation of thermal management materials in electronic equipment. The interface structure formed by covalent bonding is an effective way to promote interfacial heat transfer. Herein, an integrated composite with multi-aspect covalent bonding beneficial for heat transmission is constructed by polyimide (PI) polymerization with maleimide modified graphene nanosheets (M@GNS).
View Article and Find Full Text PDFSolar-driven evaporation of water is a sustainable and promising technology for addressing the crisis of clean water. Herein, novel vertically arranged carbon nanotube (V-CNT) aerogels with a tree branch structure is facilely synthesized through an ice templating method. The V-CNT-based photothermal evaporator exhibits efficient broadband light trapping and super-hydrophilicity.
View Article and Find Full Text PDFThe emergence and prevalence of drug-resistant bacteria caused by the overuse of antibiotics pose new challenges to the treatment of bacterial infections. In this work, hollow mesoporous CuO nanozymes (HM-CuO nanozymes) as excellent antibacterial agents were prepared by a template method. The synthesized HM-CuO nanozymes exhibit peroxidase-like catalytic activity, which can efficiently catalyze HO to generate toxic reactive oxygen species (ROS), causing fatal damage to bacteria.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2022
Heat dissipation efficiency and electromagnetic interference (EMI) shielding performance are vital to integration, miniaturization, and application of electronic devices. Flexible and designable polymer-based composites are promising candidates but suffer from unavoidable interfacial thermal resistances, anisotropic thermal conductivity, and low shielding of EMI limiting application. Herein, multifunctional epoxy resin (EP)-based composites with an interconnected carbon fibers (CFs) network structure containing a low thermal resistance interfacial were prepared by high-temperature calcination and infiltration.
View Article and Find Full Text PDFIt is well acknowledged that the microphase-separated morphology of anion exchange membranes (AEMs) is of vital importance for membrane properties utilized in alkaline fuel cells. Herein, a rigid macromolecule poly(methyldiallylamine) (PMDA) is incorporated to regulate the microphase morphology of hyperbranched AEMs. As expected, the hyperbranched poly(vinylbenzyl chloride) (HB-PVBC) is guided to distribute along PMDA chains, and longer PMDA cha leads to a more distinct microphase morphology with interconnected ionic channels.
View Article and Find Full Text PDFEvery metal and metallurgical industry is associated with the generation of wastewater, influencing the living and non-living environment, which is alarming to environmentalists. The strict regulations about the dismissal of acid and metal into the environment and the increasing emphasis on the recycling/reuse of these effluents after proper remedy have focused the research community's curiosity in developing distinctive approaches for the recovery of acid and metals from industrial wastewaters. This study reports the synthesis of UiO-66-(COOH) using dual ligand in water as a green solvent.
View Article and Find Full Text PDFWith a trend of continuing improvement in the development of electronic devices, a problem of serious heat accumulation has emerged which has created the need for more efficient thermal management. Graphene sheets (GNS) have drawn much attention with regard to heat transfer because of their excellent in-plane thermal conductivity; however, the ultrahigh interfacial thermal resistance between graphene lamellae has seriously restricted its practical applications. Herein, we describe heat transfer membranes composed of graphene which have been modified by intrinsic thermally conductive polymers with different molecular weights.
View Article and Find Full Text PDFIt is important to emphasize that the adjustment of an organic-inorganic interfacial chemical environment plays an important role during the separation performance of composite materials. In this paper, a series of hybrid membranes were prepared by blending polyvinyl alcohol (PVA) solution and sulfonated nano-TiO (SNT) suspension. The effects of different interfacial chemical surroundings on ions transfer were explored by regulating the dosage content of SNT.
View Article and Find Full Text PDFThe aim of this paper was to investigate the immunosuppressive effects of dihydroartemisinin and Huobahua compatibility in mice with delayed hypersensitivity and explore its possible mechanism. The delayed-type hypersensitivity(DTH) model in mice was established to observe the immunosuppressive effects of dihydroartemisinin and Huobahua compatibility in DTH mice. ELISA assay was used to detect the contents of interferon(IFN-γ); histopathological changes and degree of mononuclear infiltration of right ear tissues were examined by HE staining; the expression level of intercellular cell adhesion molecule-1(ICAM-1) in the right ear of mice was detected by immunohistochemistry; the protein expression levels of p38 phospho mitogen activated protein kinase(p-p38 MAPK) was detected by Western blot analysis.
View Article and Find Full Text PDFCarboxyl-type boronic acid copolymers (CBACs) were synthesized by a radical polymerization method and used for the preparation of polyvinyl alcohol (PVA)-based composite membranes via a solution mixture method. The as-prepared composite membranes exhibited a water uptake (W) of 122.6-150.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2020
Combination chemotherapy is an effective way to improve the therapeutic efficiency in anticancer treatment. Herein, we synthesized a novel amphiphilic triblock copolymer via a two-step ring-opening polymerization (ROP) followed by post-modification. Doxorubicin (DOX) was encapsulated into the copolymeric micelles through hydrophobic interactions, cisplatin (CDDP) was employed to in situ crosslink the interface of DOX-loaded micelles through Pt-carboxyl coordination interaction.
View Article and Find Full Text PDFThe stability of polymeric micelles is a key property for anticancer drug delivery. In this study, a novel amphiphilic triblock copolymer, methoxy poly(ethylene glycol)-b-poly(allyl glycidyl ether)-b-poly(ε-caprolactone) (mPEG-b-PAGE-b-PCL), with different hydrophobic lengths was designed and synthesized using the combination of two successive ring-opening polymerizations. The products were characterized using H NMR and gel permeation chromatography (GPC).
View Article and Find Full Text PDFIt remains a challenge to develop highly polymer-based nanocomposite thermal interface materials, which can effectively remove heat developed during the miniaturization of electronic instruments. It has been reported that a large number of graphene-based nanocomposites exhibit excellent performance. However, it is still an issue to construct thermal conductive pathways by orientation arrangements with a low filler volume fraction.
View Article and Find Full Text PDFColorization for fabricating aluminum pigments has broad application prospects in recent years. In this study, yellow-colored aluminum pigments with the double-layer structure Al@SiO₂@PFMV were prepared using a sol-gel method. A crosslinked copolymeric dye (PFMV) was firstly synthesized by radical polymerization using vinyl triethoxysilane (VTES) and a small molecular dye (FGMAC) as monomers.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
December 2018
In this study, a Y-shaped amphiphilic block copolymer consisting of hydrophilic poly(ethylene glycol) (mPEG) and two poly(ε-caprolactone) (PCL) as the hydrophobic arms with a ketal linker was synthesized (mPEG-Ketal-(PCL)). The structure of the copolymer with different compositions was characterized by H NMR, gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). The amphiphilic property endows the copolymer with the ability to be self-assembled into micelles for encapsulating anticancer drug doxorubicin (DOX), and the effect of copolymer with different PCL length on drug loading properties were tested.
View Article and Find Full Text PDFBoronic acid copolymers with a large number of functional groups were obtained via a free radical polymerization method. The corresponding composite membranes for alkaline diffusion dialysis (DD) were prepared by a crosslinking reaction between polyvinyl alcohol (PVA) and the as-obtained boronic acid copolymers. The composite membranes possessed water uptake (W) of 122.
View Article and Find Full Text PDFMonte Carlo simulations were carried out to study the phase separation of a copolymer blend comprising an alternating copolymer and/or block copolymer in a thin film, and a phase diagram was constructed with a series of composed recipes. The effects of composition and segregation strength on phase separation were discussed in detail. The chain conformation of the block copolymer and alternating copolymer were investigated with changes of the segregation strength.
View Article and Find Full Text PDFPb(In(0.5)Nb(0.5))O(3)-Pb(Mg(1/3)Nb(2/3))O(3)-PbTiO(3) (PIN-PMN-PT) ferroelectric crystals attracted extensive attentions in last couple years, due to their higher usage temperatures range (> 30°C) and coercive fields (~5kV/cm), meanwhile maintaining similar electromechanical couplings (k(33)> 90%) and piezoelectric coefficients (d(33)~1500pC/N), when compared to their binary counterpart Pb(Mg(1/3)Nb(2/3))O(3)-PbTiO(3).
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
February 2011
The coercive fields (E(C)) of Pb(In₀.₅Nb₀.₅)O₃-Pb(Mg(¹/₃)Nb(²/₃)O₃-PbTiO₃ (PIN-PMN-PT) ternary single crystals were found to be 5 kV/cm, double the value of binary Pb(Mg(¹/₃)Nb(²/₃)O₃-PbTiO₃ (PMNT) crystals, further increased to 6 to 9 kV/cm using Mn modifications.
View Article and Find Full Text PDFThe piezoelectric properties of Pb(In(0.5)Nb(0.5))O(3)-Pb(Mg(1∕3)Nb(2∕3))O(3)-PbTiO(3) crystals with various engineered domain configurations were investigated.
View Article and Find Full Text PDF