Publications by authors named "Rreze Gecaj"

In cattle, the corpus luteum (CL) is pivotal in maintaining early pregnancy by secreting progesterone. To establish pregnancy, the conceptus produces interferon-τ, preventing luteolysis and initiating the transformation of the CL spurium into a CL verum. Although this transformation is tightly regulated, limited data are available on the expression of microRNAs (miRNAs) during and after this process.

View Article and Find Full Text PDF

This study was aimed for the evaluation of somatic cell count (SCC), physicochemical, and microbiological parameters during the end of lactation in the raw milk of Alpine and native Red goat breed. In the experiment, 102 milk samples from Alpine and native Red goats were included. Two different groups within the same breed were analyzed: a group consisting of animals in their first lactation and the second group consisting of animals from the fifth lactation.

View Article and Find Full Text PDF

Tick-borne diseases pose a serious threat to human health in South-Eastern Europe, including Kosovo. While Crimean-Congo hemorrhagic fever (CCHF) is a well-known emerging infection in this area, there are no accurate data on Lyme borreliosis and tick-borne encephalitis (TBE). Therefore, we sampled and tested 795 ticks.

View Article and Find Full Text PDF

The formation, function, and subsequent regression of the ovarian corpus luteum (CL) are dynamic processes that enable ovary cyclical activity. Studies in whole ovary tissue have found microRNAs (miRNAs) to by critical for ovary function. However, relatively little is known about the role of miRNAs in the bovine CL.

View Article and Find Full Text PDF

Gene knockout by homologous recombination is a popular method to study gene functions in the mouse in vivo. However, its lack of temporal control has limited the interpretation of knockout studies because the complete elimination of a gene product often alters developmental processes, and can induce severe malformations or lethality. Conditional gene knockdown has emerged as a compelling alternative to gene knockout, an approach well-established in vitro but that remains challenging in vivo, especially in the adult brain.

View Article and Find Full Text PDF