Publications by authors named "Rr Hansen"

Discovery of new strains of bacteria that inhibit pathogen growth can facilitate improvements in biocontrol and probiotic strategies. Traditional, plate-based co-culture approaches that probe microbial interactions can impede this discovery as these methods are inherently low-throughput, labor-intensive, and qualitative. We report a second-generation, photo-addressable microwell device, developed to iteratively screen interactions between candidate biocontrol agents existing in bacterial strain libraries and pathogens under increasing pathogen pressure.

View Article and Find Full Text PDF

Background: Ants can become efficient biocontrol agents in plantation crops as they prey on pest insects and may inhibit plant pathogens by excreting broad-spectrum antibiotics. However, ants also provide a disservice by augmenting attended honeydew producing homopterans. This disservice may be avoided by offering ants artificial sugar as an alternative to honeydew.

View Article and Find Full Text PDF

The effect of nitrogen and glyphosate on the plant community composition was investigated in a simulated field margin ecosystem. The plant community composition was inferred from pin-point cover data using a model-based ordination method that is suited for modelling pin-point cover data. The mean structure of the ordination model is analogous to a standard linear model, which enabled us to estimate the mean effects of nitrogen and glyphosate and their interaction in the two-dimensional ordination space.

View Article and Find Full Text PDF

Multispecies biofilms are a common limitation in membrane bioreactors, causing membrane clogging, degradation, and failure. There is a poor understanding of biological fouling mechanisms in these systems due to the limited number of experimental techniques useful for probing microbial interactions at the membrane interface. Here, we develop a new experimental method, termed polymer surface dissection (PSD), to investigate multispecies assembly processes over membrane surfaces.

View Article and Find Full Text PDF

Biologists have long attempted to understand the relationship between phenotype and genotype. To better understand this connection, it is crucial to develop practical technologies that couple microscopic cell screening with cell isolation at high purity for downstream genetic analysis. Here, the use of photodegradable poly(ethylene glycol) hydrogels for screening and isolation of bacteria with unique growth phenotypes from heterogeneous cell populations is described.

View Article and Find Full Text PDF

Understanding microbe-microbe interactions is critical to predict microbiome function and to construct communities for desired outcomes. Investigation of these interactions poses a significant challenge due to the lack of suitable experimental tools available. Here we present the microwell recovery array (MRA), a new technology platform that screens interactions across a microbiome to uncover higher-order strain combinations that inhibit or promote the function of a focal species.

View Article and Find Full Text PDF

Screening mutant libraries (MLs) of bacteria for strains with specific phenotypes is often a slow and laborious process that requires assessment of tens of thousands of individual cell colonies after plating and culturing on solid media. In this report, we develop a three-dimensional, photodegradable hydrogel interface designed to dramatically improve the throughput of ML screening by combining high-density cell culture with precision extraction and the recovery of individual, microscale colonies for follow-up genetic and phenotypic characterization. ML populations are first added to a hydrogel precursor solution consisting of polyethylene glycol (PEG) -nitrobenzyl diacrylate and PEG-tetrathiol macromers, where they become encapsulated into 13 μm thick hydrogel layers at a density of 90 cells/mm, enabling parallel monitoring of 2.

View Article and Find Full Text PDF

Lectin-functional interfaces are useful for isolation of bacteria from solution because they are low-cost and allow nondestructive, reversible capture. This study provides a systematic investigation of physical and chemical surface parameters that influence bacteria capture over lectin-functionalized polymer interfaces and then applies these findings to construct surfaces with significantly enhanced bacteria capture. The designer block copolymer poly(glycidyl methacrylate)- block-poly(vinyldimethyl azlactone) was used as a lectin attachment layer, and lectin coupling into the polymer film through azlactone-lectin coupling reactions was first characterized.

View Article and Find Full Text PDF

To understand the consequences of underwater noise exposure for cetaceans, there is a need for assessments of behavioural responses over increased spatial and temporal scales. Bottom-moored acoustic recorders and satellite tags provide such long-term and large spatial coverage of behaviour compared to short-duration acoustic-recording tags. However, these tools result in a decreased resolution of data from which an animal response can be inferred, and no direct recording of the sound received at the animal.

View Article and Find Full Text PDF

Impact assessments for sonar operations typically use received sound levels to predict behavioural disturbance in marine mammals. However, there are indications that cetaceans may learn to associate exposures from distant sound sources with lower perceived risk. To investigate the roles of source distance and received level in an area without frequent sonar activity, we conducted multi-scale controlled exposure experiments ( n = 3) with 12 northern bottlenose whales near Jan Mayen, Norway.

View Article and Find Full Text PDF

Microwell arrays are important tools for studying single cell behavior and cell-cell interactions, both in microbial and mammalian systems. However, retrieval of cells from microwell arrays with high spatial precision remains a major technical hurdle that prevents follow-up genetic and phenotypic characterization of cells within observed microwells. This work describes a new, material-based approach to grow and retrieve live bacterial cells from small (≥20 μm diameter) microwells in an array using the plant pathogen as a model bacterium.

View Article and Find Full Text PDF

The aim of this study was to develop a nanoparticle-based cell capture system combined with a lateral flow test strip (LFT) assay for rapid detection of Campylobacter jejuni from poultry samples. The developed assay was bench-marked against the standard modified Charcoal Cefoperazone Deoxycholate Agar (mCCDA) method according to ISO16140:2003 procedures. The synthesized ferromagnetic nanoparticles (FMNs) were modified with glutaraldehyde, then functionalized with polyclonal antibodies for specific C.

View Article and Find Full Text PDF

In this paper, fabrication methods that generate novel surfaces using the azlactone-based block co-polymer, poly (glycidyl methacrylate)-block-poly (vinyl dimethyl azlactone) (PGMA-b-PVDMA), are presented. Due to the high reactivity of azlactone groups towards amine, thiol, and hydroxyl groups, PGMA-b-PVDMA surfaces can be modified with secondary molecules to create chemically or biologically functionalized interfaces for a variety of applications. Previous reports of patterned PGMA-b-PVDMA interfaces have used traditional top-down patterning techniques that generate non-uniform films and poorly controlled background chemistries.

View Article and Find Full Text PDF

The Arctic is warming at twice the rate of the rest of the world. This impacts Arctic species both directly, through increased temperatures, and indirectly, through structural changes in their habitats. Species are expected to exhibit idiosyncratic responses to structural change, which calls for detailed investigations at the species and community level.

View Article and Find Full Text PDF

Skeletal conditions are common causes of chronic pain and there is an unmet medical need for improved treatment options. Bone pain is currently managed with disease modifying agents and/or analgesics depending on the condition. Disease modifying agents affect the underlying pathophysiology of the disease and reduce as a secondary effect bone pain.

View Article and Find Full Text PDF

In-plane frost growth on chilled hydrophobic surfaces is an inter-droplet phenomenon, where frozen droplets harvest water from neighboring supercooled liquid droplets to grow ice bridges that propagate across the surface in a chain reaction. To date, no surface has been able to passively prevent the in-plane growth of ice bridges across the population of supercooled condensate. Here, we demonstrate that when the separation between adjacent nucleation sites for supercooled condensate is properly controlled with chemical micropatterns prior to freezing, inter-droplet ice bridging can be slowed and even halted entirely.

View Article and Find Full Text PDF

Microbial communities are complex heterogeneous systems that are influenced by physical and chemical interactions with their environment, host, and community members. Techniques that facilitate the quantitative evaluation of how microscale organization influences the morphogenesis of multispecies communities could provide valuable insights into the dynamic behavior and organization of natural communities, the design of synthetic environments for multispecies culture, and the engineering of artificial consortia. In this work, we demonstrate a method for patterning microbes into simple arrangements that allow the quantitative measurement of growth dynamics as a function of their proximity to one another.

View Article and Find Full Text PDF

Severe pain is a common and debilitating complication of metastatic bone cancer. Current analgesics provide insufficient pain relief and often lead to significant adverse effects. In models of cancer-induced bone pain, pathological sprouting of sensory fibers at the tumor-bone interface occurs concomitantly with reactive astrocytosis in the dorsal horn of the spinal cord.

View Article and Find Full Text PDF

The response of body size to increasing temperature constitutes a universal response to climate change that could strongly affect terrestrial ectotherms, but the magnitude and direction of such responses remain unknown in most species. The metabolic cost of increased temperature could reduce body size but long growing seasons could also increase body size as was recently shown in an Arctic spider species. Here, we present the longest known time series on body size variation in two High-Arctic butterfly species: Boloria chariclea and Colias hecla.

View Article and Find Full Text PDF

The attachment and arrangement of microbes onto a substrate is influenced by both the biochemical and physical surface properties. In this report, we develop lectin-functionalized substrates containing patterned, three-dimensional polymeric structures of varied shapes and densities and use these to investigate the effects of topology and spatial confinement on lectin-mediated microbe immobilization. Films of poly(glycidyl methacrylate)-block-4,4-dimethyl-2-vinylazlactone (PGMA-b-PVDMA) were patterned on silicon surfaces into line arrays or square grid patterns with 5 μm wide features and varied pitch.

View Article and Find Full Text PDF

Microbial exopolysaccharides (EPS) play a critical and dynamic role in shaping the interactions between microbial community members and their local environment. The capture of targeted microbes using surface immobilized lectins that recognize specific extracellular oligosaccharide moieties offers a nondestructive method for functional characterization of EPS content. In this report, we evaluate the use of the block copolymer, poly(glycidyl methacrylate)-block-4,4-dimethyl-2-vinylazlactone (PGMA-b-PVDMA), as a surface scaffold for lectin-specific microbial capture.

View Article and Find Full Text PDF

Treatment of chronic pain remains a clinical challenge and sufficient pharmacological management is difficult to achieve without concurrent adverse drug effects. Recently the concept of chronic pain as a solely neuron-mediated phenomenon has evolved and it is now appreciated that also glial cells are of critical importance in pain generation and modulation. Astrocytes are macroglial cells that have close structural relationships with neurons; they contact neuronal somata and dendrites and enwrap synapses, where small astrocytic processes have been shown to be highly motile.

View Article and Find Full Text PDF

GAB(A) (γ-aminobutyric acid) is abundantly expressed within the brain, and spinal cord pain circuits where it acts as the principal mediator of fast inhibitory neurotransmission. However, drugs that target GABA(A) receptor function such as the classical benzodiazepines have not been optimised to promote analgesia, are limited by side effects and are not routinely used for this purpose in humans. Compounds such as NS11394, L-838,417, HZ166 and TPA023 all bind to the same benzodiazepine site on the GABA(A) receptor to allosterically modulate receptor function and enhance the actions of GABA.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session8ph82d0rbk5omrv21oipmqastu9ltlrc): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once