Diamond electrochemistry is primarily influenced by quantities of sp-carbon, surface terminations, and crystalline structure. In this work, a new dimension is introduced by investigating the effect of using substrate-interlayers for diamond growth. Boron and nitrogen co-doped nanocrystalline diamond (BNDD) films are grown on Si substrate without and with Ti and Ta as interlayers, named BNDD/Si, BNDD/Ti/Si, and BNDD/Ta/Ti/Si, respectively.
View Article and Find Full Text PDFSurface treatment is critical for homogeneous coating over a large area and high-resolution patterning of nanodiamond (ND) particles. To optimize the interaction between the surface of a substrate and the colloid of ND particles, it is essential to remove hydrocarbon contamination by surface treatment and to increase the surface energy of the substrate, hence improving the diamond film homogeneity upon its deposition. However, the impact of substrate surface treatment on the properties of coatings and patterns is not fully understood.
View Article and Find Full Text PDFNanocrystalline diamond (NCD) field emitters have attracted significant interest for vacuum microelectronics applications. This work presents an approach to enhance the field electron emission (FEE) properties of NCD films by co-doping phosphorus (P) and nitrogen (N) using microwave plasma-enhanced chemical vapor deposition. While the methane (CH) and P concentrations are kept constant, the N concentration is varied from 0.
View Article and Find Full Text PDF