This research was carried out with the aim of obtaining appropriate principles for describing the influence of working parameters and the aggressive action of an acidic medium on the wear and corrosion resistance of martensitic stainless steels. Tribological tests were performed on induction-hardened surfaces of stainless steels X20Cr13 and X17CrNi16-2 under combined wear conditions at a load of 100 to 300 N and a rotation speed of 382 to 754 min. The wear test was carried out on a tribometer with the use of an aggressive medium in the chamber.
View Article and Find Full Text PDFHigh performance liquid chromatography (HPLC) with a solvent gradient and absorbance detection is one of the most widely used methods in analytical chemistry. The observed absorbance baseline is affected by the changes in the refractive index (RI) of the mobile phase. Near the limited of detection, this complicates peak quantitation.
View Article and Find Full Text PDFAbsorption spectrophotometry has been and still is the industry standard for detection in HPLC. Limit of detection (LOD) and linear dynamic range (LDR) are the primary performance requirements and have driven continuous improvement of spectrophotometric HPLC detectors. Recent advances in HPLC column technology have led to low flow-rate HPLC such as capillary HPLC and nanoflow HPLC and put higher demands on optical HPLC signal detection.
View Article and Find Full Text PDFA generic solution is proposed for the deleterious viscous heating effects in adiabatic or near-adiabatic systems that can be expected when trying to push the column operating pressures above the currently available range of ultra-high pressures (i.e., 1200 bar).
View Article and Find Full Text PDFThis work investigates the impact of conduit geometry on the chromatographic performance of typical particulate microchip packings. For this purpose, high-performance liquid chromatography (HPLC)/UV-microchips with separation channels of quadratic, trapezoidal, or Gaussian cross section were fabricated by direct laser ablation and lamination of multiple polyimide layers and then slurry-packed with either 3 or 5 microm spherical porous C8-silica particles under optimized packing conditions. Experimentally determined plate height curves for the empty microchannels are compared with dispersion coefficients from theoretical calculations.
View Article and Find Full Text PDFHPLC microchips are investigated experimentally with respect to packing density, pressure drop-flow rate relation, hydraulic permeability, and separation efficiency. The prototype microchips provide minimal dead volume, on-chip UV detection, and a 75 mm long separation channel with a ca. 50 microm x 75 microm trapezoidal cross-section.
View Article and Find Full Text PDFTo fulfil the increasing demand for faster and more complex separations, modern HPLC separations are performed at ever higher pressures and temperatures. Under these operating conditions, it is no longer possible to safely assume the mobile phase fluid properties to be invariable of the governing pressures and temperatures, without this resulting in significantly deficient results. A detailed insight in the influence of pressure and temperature on the physico-chemical properties of the most commonly used liquid mobile phases: water-methanol and water-acetonitrile mixtures, therefore becomes very timely.
View Article and Find Full Text PDFWe report an experimental study of separation efficiency in microchip high-performance liquid chromatography (HPLC). For this study, prototype HPLC microchips were developed that are characterized by minimal dead volume, a separation channel with trapezoidal cross section, and on-chip UV detection. A custom-built stainless steel holder enabled microchip packing under pressures of up to 400 bar and ultrasonication.
View Article and Find Full Text PDFPreparation of monolithic capillary columns for separations in the CEC mode using UV-initiated polymerization of the plain monolith followed by functionalization of its pore surface by photografting has been studied. The first step enabled the preparation of generic poly(butyl methacrylate-co-ethylene dimethacrylate) monoliths with optimized porous properties, controlled by the percentages of porogens 1-decanol and cyclohexanol in the polymerization mixture, irradiation time, and UV light intensity. Ionizable monomers [2-(methacryloyloxy)ethyl]trimethylammonium chloride or 2-acryloamido-2-methyl-1-propanesulfonic acid were then photografted onto the monolithic matrix, allowing us to control the direction of the EOF in CEC.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
May 2007
A comparison between HPLC with conventional fluorescence detection and capillary-LC (microHPLC) with native laser-induced fluorescence (LIF) detection was done to determine chloroquine (CQ) and quinine (Q) in human serum. HPLC experiments were run with parameters of the conventional fluorimeter set at the highest level of sensitivity. Results were compared with those obtained on microHPLC coupled to a ZETALIF (He-Cd 325 nm) detector which provided a 50-fold increase in sensitivity.
View Article and Find Full Text PDFThe proteome of the human nucleolus was investigated in a single analysis using off-line strong cation exchange chromatography and microfraction collection combined with HPLC-chip/MS. The analysis was conducted either as a 1-D workflow with HPLC-chip alone or as a 2-D workflow. Two hundred and six unique proteins were identified in the International Protein Index human database corresponding to 2024 unique tryptic peptides identified in the 2-D analysis.
View Article and Find Full Text PDFA method is proposed for the comprehensive characterization and comparison of columns in the high-performance liquid chromatographic (HPLC) and capillary electrochromatographic (CEC) modes. Using this approach, column parameters such as the number of plates, the eddy-diffusion and mass-transfer contributions to peak broadening, the permeability, and the analysis time are incorporated in a single graph and a comparison in terms of efficiency and speed is obtained. The chromatographic performance of silica-based and polymer-based monolithic capillary columns is discussed and a comparison is made with the performance of packed columns.
View Article and Find Full Text PDFMethacrylate ester-based monolithic stationary phases were prepared in situ in fused-silica capillaries and simultaneously in vials. The influence of the composition of the polymerization mixture on the morphology was studied with mercury intrusion porosimetry, scanning electron microscopy, and nitrogen adsorption measurements. A high-density porous polymeric material with a unimodal pore-size distribution was prepared with 40 wt % monomers and 60 wt % solvent in the mixture.
View Article and Find Full Text PDFMethacrylate-ester-based monoliths containing quaternary ammonium groups were prepared in situ in capillary columns and in simultaneous experiments in vials, employing thermal initiation. The chromatographic properties of the monoliths were determined with capillary electrochromatography (CEC), and their morphology was studied with mercury-intrusion porosimetry on the bulk materials. Materials with different, well repeatable pore-size distributions could be prepared.
View Article and Find Full Text PDFA comparison is made between the efficiency of microparticulate capillary columns and silica and polymer-based monolithic capillary columns in the pressure-driven (high-performance liquid chromatography) and electro-driven (capillary electrochromatography) modes. With packed capillary columns similar plate heights are possible as with conventional packed columns. However, a large variation is observed in the plate heights for individual columns.
View Article and Find Full Text PDFA systematic investigation of the influence of the perimeter shape of open and particle packed fused silica capillaries on chromatographic properties such as resistance to flow and dispersion of solutes propelled through these channels has been conducted. Verifications of these uncommon experiments with existing theoretical treatments are presented and the insights transferred to a novel polymer chip design with integrated facilities for complex separations. A comparison of the chromatographic performance of a real life proteomics sample on this chip with a capillary column of "similar" dimensions is presented.
View Article and Find Full Text PDFThe influence of the aspect ratio, rho (rho = column diameter/particle diameter), on column parameters such as efficiency, retention factors and flow resistance was studied in both high-performance liquid chromatography and capillary electrochromatography with packed capillary columns. In order to compare the true efficiencies of different columns, a procedure to account for external band broadening was applied. High efficiencies (reduced plate height h approximately 2) were obtained with capillary columns with internal diameters of 150-, 100-, and 75-microm, packed with 10-microm particles.
View Article and Find Full Text PDFJ Biochem Biophys Methods
September 2004
Small-volume chromatographic columns are only able to generate narrow peaks when flow rates, injection volume and instrument components, such as detector, connecting tubing and fittings, are matched to the peak dispersion from the column. Criteria for the proper design of chromatographic instrumentation are therefore derived from a general model on total dispersion. The performance of such a system is then experimentally evaluated from applications run on narrow-bore, small-volume columns.
View Article and Find Full Text PDFThe most recent and important applications in capillary electrochromatography (CEC) are summarized, covering literature published since May 2001. A selection of new developments in stationary phases for CEC is highlighted, and enantiomeric separations and chiral stationary phases are discussed. Also, CEC applications of biological molecules, pharmaceuticals, and applications in the field of industrial and environmental analysis are summarized.
View Article and Find Full Text PDFBenzodiazepines, namely flunitrazepam and its three major metabolites, were successfully separated by microemulsion electrokinetic chromatography. Separation was achieved using an untreated fused-silica capillary (48 cm (effective length 40 cm) x 50 num) at 25 kV; detection was performed by UV at 220 nm. The microemulsion system consisted of 70 mM octane, 800 mM 1-butanol, 80 mM sodium dodecyl sulfate (SDS) and 10 mM borate buffer, pH 9.
View Article and Find Full Text PDFA method based on capillary zone electrophoresis is presented for the determination of the purity of commercial dimeric cyanine dyes (TOTO, YOYO, BOBO, all -1 and -3 species, LOLO-1, POPO-1) that are common as fluorescent probes for nucleic acid staining. These dyes are tetracharged cations, and have a strong tendency to interact with negatively charged centres, where they are rapidly adsorbed, especially from aqueous solutions. Thus anionic sites at the capillary wall must be avoided, and aqueous buffers are not suitable.
View Article and Find Full Text PDFA review is presented of the most important recent applications of capillary electrochromatography (CEC) for the analysis of acidic, basic, and neutral compounds, of biomolecules, environmental substances, natural products, pharmaceuticals, and chiral compounds. Packed-column CEC (packed-CEC), open-tubular (OT-CEC), as well as pressure-assisted CEC (pseudo-CEC) are hereby considered. Papers published between July 1999 and April 2001 were taken into account.
View Article and Find Full Text PDFLC-fluorescence and LC-MS methods have been previously reported for use in decoding bead-based combinatorial libraries. We present the use of capillary electrochromatography (CEC) for highly selective decoding in combination with laser-induced fluorescence (LIF) detection for high sensitivity. The results are compared to prior data obtained using HPLC with fluorescence detection.
View Article and Find Full Text PDFA new in-house designed and constructed injection valve for capillary electrochromatography (CEC) based on a rotating injection part with compartments for the eluent as well as for the sample has been coupled to a mass spectrometer via a sheath flow electrospray ionisation (ESI) interface, using short capillary columns of 15 cm length. The CEC columns were packed with 3 microm C(18) bonded silica particles, and a mixture of peptides was analysed using an ammonium acetate/acetonitrile eluent. A significant increase in the signal-to-noise ratio was obtained when the peptides were dissolved in water with the same content of organic modifier as in the eluent with an addition of 0.
View Article and Find Full Text PDF