Publications by authors named "Rozgonyi T"

We demonstrate long-lived electronic coherences in molecules using a combination of measurements with shaped octave spanning ultrafast laser pulses and calculations of the light matter interaction. Our pump-probe measurements prepare and interrogate entangled nuclear-electronic wave packets whose electronic phase remains well defined despite vibrational motion along many degrees of freedom. The experiments and calculations illustrate how coherences between excited states can survive, even when coherence with the ground state is lost, and may have important implications for many areas of attosecond science and photochemistry.

View Article and Find Full Text PDF

The properties of transition-metal complexes and their chemical dynamics can be effectively modified with ligand substitutions, and theory can be a great aid to such molecular engineering. In this paper, we first theoretically explored how substitution with a Cl atom at different positions of the terpyridine ligand affects the electronic structure of the [Fe(terpy)] complex. We found that besides the substitution at position 4', the next most promising candidate to cause substantial electronic effects is that where the side pyridine ring is substituted at position 5 (β).

View Article and Find Full Text PDF

It has long been known that irradiation with visible light converts Fe(II) polypyridines from their low-spin (singlet) to high-spin (quintet) state, yet mechanistic interpretation of the photorelaxation remains controversial. Herein, we simulate the full singlet-triplet-quintet dynamics of the [Fe(terpy)] (terpy = 2,2':6',2"-terpyridine) complex in full dimension, in order to clarify the complex photodynamics. Importantly, we report a branching mechanism involving two sequential processes: a dominant MLCT→MC(T)→MC(T)→MC, and a minor MLCT→MC(T)→MC component.

View Article and Find Full Text PDF

We perform time-resolved ionization spectroscopy measurements of the excited state dynamics of CHI and CHIBr following photoexcitation in the deep UV. The fragment ions produced by ionization with a vacuum-ultraviolet probe pulse are measured with velocity map imaging, and the momentum resolved yields are compared with trajectory surface hopping calculations of the measurement observable. Together with recent time-resolved photoelectron spectroscopy measurements of the same dynamics, these results provide a detailed picture of the coupled electronic and nuclear dynamics involved.

View Article and Find Full Text PDF

We demonstrate coherent control over internal conversion during strong-field molecular ionization with shaped, few-cycle laser pulses. The control is driven by interference in different neutral states, which are coupled via non-Born-Oppenheimer terms in the molecular Hamiltonian. Our measurements highlight the preservation of electronic coherence in nonadiabatic transitions between electronic states.

View Article and Find Full Text PDF

Simulation of the ultrafast excited-state dynamics and elastic X-ray scattering of the [Fe(bmip)] [bmip = 2,6-bis(3-methyl-imidazole-1-ylidine)-4-pyridine] complex is presented and analyzed. We employ quantum wavepacket dynamics simulations on a 5-dimensional potential energy surface (PES) calculated by time-dependent density functional theory with 26 coupled diabatic states. The simulations are initiated by explicit inclusion of a time-dependent electromagnetic field.

View Article and Find Full Text PDF

We compare the excited state dynamics of diiodomethane (CHI) and bromoiodomethane (CHBrI) using time resolved photoelectron spectroscopy. A 4.65 eV UV pump pulse launches a dissociative wave packet on excited states of both molecules and the ensuing dynamics are probed via photoionization using a 7.

View Article and Find Full Text PDF

The excited-state dynamics of two functional Fe-carbene complexes, [Fe(bmip)] (bmip = 2,6-bis(3-methyl-imidazole-1-ylidene)-pyridine) and [Fe(btbip)] (btbip = 2,6-bis(3- tert-butyl-imidazole-1-ylidene)pyridine), are studied using the spin-vibronic model. In contrast to the usual projection of the ground state nuclear wave function onto an excited state surface, the dynamics are initiated by an explicit interaction term between the external time-dependent electric field (laser pulse) and the transition dipole moment of the molecule. The results show that the spin-vibronic model, as constructed directly from electronic structure calculations, exhibits erroneous, polarization-dependent relaxation dynamics stemming from artificial interference of coupled relaxation pathways.

View Article and Find Full Text PDF

Ultrafast pump-probe spectroscopy within the X-ray regime is now possible owing to the development of X-ray Free Electrons Lasers (X-FELs) and is opening new opportunities for the direct probing of femtosecond evolution of the nuclei, the electronic and spin degrees of freedom. In this contribution we use wavepacket dynamics of the photoexcited decay of a new Fe(ii) complex, [Fe(bmip)] (bmip = 2,6-bis(3-methyl-imidazole-1-ylidine)pyridine), to simulate the experimental observables associated with femtosecond Fe K-edge X-ray Absorption Near-Edge Structure (XANES) and X-ray emission (XES) spectroscopy. We show how the evolution of the nuclear wavepacket is translated into the spectroscopic signal and the sensitivity of these approaches for following excited state dynamics.

View Article and Find Full Text PDF

Fe(II) complexes have long been assumed unsuitable as photosensitizers because of their low-lying nonemissive metal centered (MC) states, which inhibit electron transfer. Herein, we describe the excited-state relaxation of a novel Fe(II) complex that incorporates N-heterocyclic carbene ligands designed to destabilize the MC states. Using first-principles quantum nuclear wavepacket simulations we achieve a detailed understanding of the photoexcited decay mechanism, demonstrating that it is dominated by an ultrafast intersystem crossing from (1)MLCT-(3)MLCT proceeded by slower kinetics associated with the conversion into the (3)MC states.

View Article and Find Full Text PDF

We study strong-field molecular ionization as a function of pulse duration. Experimental measurements of the photoelectron yield for a number of molecules reveal competition between different ionization continua (cationic states) which depends strongly on pulse duration. Surprisingly, in the limit of short pulse duration, we find that a single ionic continuum dominates the yield, whereas multiple continua are produced for longer pulses.

View Article and Find Full Text PDF

Simulations of prebiotic NH₃ synthesis from NO₃⁻ and NO₂⁻ on pyrite surfaces under hydrothermal conditions are reported. Ab initio metadynamics calculations have successfully explored the full reaction path which explains earlier experimental observations. We have found that the reaction mechanism can be constructed from stepwise single atom transfers which are compatible with the expected reaction time scales.

View Article and Find Full Text PDF

The supercritical water-pyrite interface has been studied by ab initio molecular dynamics simulation. Extreme conditions are relevant in the iron-sulfur world (ISW) theory where prebiotic chemical reactions are postulated to occur at the mineral-water interface. We have investigated the properties of this interface under such conditions.

View Article and Find Full Text PDF

The direct reaction kinetic method of low pressure fast discharge flow (DF) with resonance fluorescence monitoring of OH (RF) has been applied to determine rate coefficients for the overall reactions OH + C2H5F (EtF) (1) and OH + CH3C(O)F (AcF) (2). Acetyl fluoride reacts slowly with the hydroxyl radical, the rate coefficient at laboratory temperature is k2(300 K) = (0.74 ± 0.

View Article and Find Full Text PDF

Theoretical predictions show that depending on the populations of the Fe 3d , 3d , and 3d orbitals two possible quintet states can exist for the high-spin state of the photoswitchable model system [Fe(terpy)]. The differences in the structure and molecular properties of these B and E quintets are very small and pose a substantial challenge for experiments to resolve them. Yet for a better understanding of the physics of this system, which can lead to the design of novel molecules with enhanced photoswitching performance, it is vital to determine which high-spin state is reached in the transitions that follow the light excitation.

View Article and Find Full Text PDF

Many reactions feature symmetry variation along the reaction path on the potential energy surface. The interconversion of the point group symmetry of the stationary points can be characteristic of these processes. Increasing the temperature, however, leads to the loss of symmetry in its traditional yes-no language.

View Article and Find Full Text PDF

The electronic structure relevant to low spin (LS)↔high spin (HS) transitions in Fe(II) coordination compounds with a FeN core are studied. The selected [Fe(tz)] () (tz = 1H-tetrazole), [Fe(bipy)] () (bipy = 2,2'-bipyridine), and [Fe(terpy)] () (terpy = 2,2':6',2″-terpyridine) complexes have been actively studied experimentally, and with their respective mono-, bi-, and tridentate ligands, they constitute a comprehensive set for theoretical case studies. The methods in this work include density functional theory (DFT), time-dependent DFT (TD-DFT), and multiconfigurational second order perturbation theory (CASPT2).

View Article and Find Full Text PDF

We demonstrate how the evolution of a bound vibrational wave packet can be controlled by a strong field laser pulse. We consider two different control schemes within the same molecule (CH(2)BrI): reshaping of the wave packet via strong field population transfer ("hole burning"), and redirecting its trajectory by dressing the potential energy surface on which the wave packet evolves ("photon locking"). Our measurements are compared with calculations using wave packet propagation on ab initio potential energy surfaces.

View Article and Find Full Text PDF

Within the B̃ absorption band of CH(2)BrCl, we theoretically analyze the laser-induced control of the Br/Cl branching ratio, Br + CH(2)Cl ← CH(2)BrCl → CH(2)Br + Cl, with CH(2)BrCl initially in its vibrational ground state. For weak-field excitation, the Br/Cl branching ratio increases as a function of wavelength, however, for wavelengths below 180 nm the branching ratio cannot be made smaller than 0.4.

View Article and Find Full Text PDF

The ultrafast photodissociation dynamics of CH(2)BrI(+) into CH(2)Br(+) + I is studied using high level ab initio electronic structure calculations in conjunction with integration of the time-dependent Schrödinger equation and compared with measured pump-probe signals. These pump-probe measurements provide evidence for momentum-dependent dissociation, which is interpreted using two theoretical models. The first is based on DFT and TD-DFT calculations neglecting spin-orbit coupling, while the other, more rigorous model employs a larger number of coupled multi-configurational potentials obtained by means of CASSCF calculations.

View Article and Find Full Text PDF

We study the transition state of pericyclic reactions at elevated temperature with unbiased ab initio molecular dynamics. We find that the transition state of the intramolecular rearrangements for barbaralane and bullvalene remains aromatic at high temperature despite the significant thermal atomic motions. Structural, magnetic, and electronic properties of the dynamical transition state show the concertedness and aromatic character.

View Article and Find Full Text PDF

The nonadiabatic photodissociation dynamics of CH2BrCl into CH2Br + Cl or CH2Cl + Br is studied using two-dimensional wavepacket propagations on ab initio multiconfigurational MS-CASPT2 potential energy surfaces. Using a three-state diabatic model, we investigate the electronic states responsible for the two competing fragmentation channels and how the conical intersection present between the two lowest excited states affects the dissociation rate. Within this model, we find that the Br/Cl branching ratio depends on the irradiation wavelength.

View Article and Find Full Text PDF

Multiconfigurational second-order perturbation theory has been employed to calculate two-dimensional potential energy surfaces for the lowest low-lying singlet electronic states of CH2BrCl as a function of the two carbon-halogen bonds. The photochemistry of the system is controlled by a nonadiabatic crossing occurring between the A and B bands, attributed to the b1A' and c1A' states, which are found almost degenerate and forming a near-degeneracy line of almost equidistant C-Br and C-Cl bonds. A crossing point in the near-degeneracy line is identified as a conical intersection in this reduced two-dimensional space.

View Article and Find Full Text PDF

A fully self-organizing neural network approach to low-dimensional control problems is described. We consider the problem of learning to control an object and solving the path planning problem at the same time. Control is based on the path planning model that follows the gradient of the stationary solution of a diffusion process working in the state space.

View Article and Find Full Text PDF