The 2019 global coronavirus (COVID-19) pandemic has brought the world to a grinding halt, highlighting the urgent need for therapeutic and preventive solutions to slow the spread of emerging viruses. The objective of this study was to assess the anti-SARS-CoV-2 effectiveness of 8 FDA-approved cationic amphiphilic drugs (CADs). SARS-CoV-2-infected Vero cells, Calu-3 cells and primary Human Nasal Epithelial Cells (HNEC) were used to investigate the effects of CADs and revealed their antiviral mode of action.
View Article and Find Full Text PDFSmall Extracellular Vesicles (sEVs) are 50-200 nm in diameter vesicles delimited by a lipid bilayer, formed within the endosomal network or derived from the plasma membrane. They are secreted in various biological fluids, including airway nasal mucus. The goal of this work was to understand the role of sEVs present in the mucus (mu-sEVs) produced by human nasal epithelial cells (HNECs) in SARS-CoV-2 infection.
View Article and Find Full Text PDFImmunocompromised individuals generally fail to mount efficacious immune humoral responses following vaccination. The emergence of SARS-CoV-2 variants of concern has raised the question as to whether levels of anti-spike protein antibodies achieved after two or three doses of the vaccine efficiently protect against breakthrough infection in the context of immune suppression. We used a fluorescence-based neutralization assay to test the sensitivity of SARS-CoV-2 variants (ancestral variant, Beta, Delta, and Omicron BA.
View Article and Find Full Text PDFBackground: In hepatitis C virus (HCV) infection, treatment failure is generally associated with the selection of resistance-associated substitutions (RAS) conferring reduced susceptibility to direct-acting antiviral (DAA) drugs. Resistant variants continue to replicate after the end of treatment with potential for transmission. This may result from the selection of "fitness-associated substitutions".
View Article and Find Full Text PDFAntimicrob Agents Chemother
June 2020
Cyclophilins play a key role in the life cycle of coronaviruses. Alisporivir (Debio 025) is a nonimmunosuppressive analogue of cyclosporine with potent cyclophilin inhibition properties. Alisporivir reduced SARS-CoV-2 RNA production in a dose-dependent manner in Vero E6 cells, with a 50% effective concentration (EC) of 0.
View Article and Find Full Text PDFAntimicrob Agents Chemother
May 2020
The quinoline MK-571 is the most commonly used inhibitor of multidrug resistance protein-1 (MRP-1) but was originally developed as a cysteinyl leukotriene receptor 1 (CysLTR1) antagonist. While studying the modulatory effect of MRP-1 on anti-hepatitis C virus (HCV) direct-acting antiviral (DAA) efficiency, we observed an unexpected anti-HCV effect of compound MK-571 alone. This anti-HCV activity was characterized in Huh7.
View Article and Find Full Text PDFBackground & Aims: Hepatic ischemia/reperfusion injury is a complication of liver surgery that involves mitochondrial dysfunction resulting from mitochondrial permeability transition pore (mPTP) opening. Cyclophilin D (PPIF or CypD) is a peptidyl-prolyl cis-trans isomerase that regulates mPTP opening in the inner mitochondrial membrane. We investigated whether and how recently created small-molecule inhibitors of CypD prevent opening of the mPTP in hepatocytes and the resulting effects in cell models and livers of mice undergoing ischemia/reperfusion injury.
View Article and Find Full Text PDFAlthough members of the display high incidence, morbidity, and mortality rates, the development of specific antiviral drugs for each virus is unlikely. Cyclophilins, a family of host peptidyl-prolyl isomerases (PPIases), play a pivotal role in the life cycles of many viruses and therefore represent an attractive target for broad-spectrum antiviral development. We report here the pangenotypic anti-hepatitis C virus (HCV) activity of a small-molecule cyclophilin inhibitor (SMCypI).
View Article and Find Full Text PDFCyclophilins are peptidyl-prolyl cis/trans isomerases (PPIase) that catalyse the interconversion of the peptide bond at proline residues. Several cyclophilins play a pivotal role in the life cycle of a number of viruses. The existing cyclophilin inhibitors, all derived from cyclosporine A or sanglifehrin A, have disadvantages, including their size, potential for side effects unrelated to cyclophilin inhibition and drug-drug interactions, unclear antiviral spectrum and manufacturing issues.
View Article and Find Full Text PDFThe NS5B RNA-dependent RNA polymerase (RdRp) is a key enzyme for Hepatitis C Virus (HCV) replication. In addition to the catalytic site, this enzyme is characterized by the presence of at least four allosteric pockets making it an interesting target for development of inhibitors as potential anti-HCV drugs. Based on a previous study showing the potential of the naturally occurring aurones as inhibitors of NS5B, we pursued our efforts to focus on pseudodimeric aurones that have never been investigated so far.
View Article and Find Full Text PDFThe hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) is a key target for antiviral intervention. The goal of this study was to identify the binding site and unravel the molecular mechanism by which natural flavonoids efficiently inhibit HCV RdRp. Screening identified the flavonol quercetagetin as the most potent inhibitor of HCV RdRp activity.
View Article and Find Full Text PDFFollowing our recent report showing the potential of naturally occurring aurones (2-benzylidenebenzofuran-3(2H)-ones) as anti-hepatitis C virus (HCV) agents, efforts were continued in order to refine the structural requirements for the inhibitory effect on HCV RNA-dependent RNA polymerase (RdRp). In this study, we targeted the B-ring moiety of aurones with the aim to improve structural features associated with higher inhibition of the targeted polymerase. In vitro evaluation of the RdRp inhibitory activity of the 37 newly synthesized compounds pointed out that the replacement of the B-ring with an N-substituted indole moiety induced the highest inhibitory effect.
View Article and Find Full Text PDFWe have identified naturally occurring 2-benzylidenebenzofuran-3-ones (aurones) as new templates for non-nucleoside hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) inhibitors. The aurone target site, identified by site-directed mutagenesis, is located in thumb pocket I of HCV RdRp. The RdRp inhibitory activity of 42 aurones was rationally explored in an enzyme assay.
View Article and Find Full Text PDFBackground: With the development of new specific inhibitors of hepatitis C virus (HCV) enzymes and functions that may yield different antiviral responses and resistance profiles according to the HCV subtype, correct HCV genotype 1 subtype identification is mandatory in clinical trials for stratification and interpretation purposes and will likely become necessary in future clinical practice. The goal of this study was to identify the appropriate molecular tool(s) for accurate HCV genotype 1 subtype determination.
Methodology/principal Findings: A large cohort of 500 treatment-naïve patients eligible for HCV drug trials and infected with either subtype 1a or 1b was studied.
Background & Aims: Silymarin is a mixture of flavonolignans extracted from the milk thistle. Silymarin contains several molecules, including silibinin A, silibinin B, isosilibinin A, isosilibinin B, silicristin, and silidianin. Intravenous infusion of silibinin induces dose-dependent reduction of hepatitis C virus (HCV) RNA levels.
View Article and Find Full Text PDFUnlabelled: In patients with hepatitis B e antigen-negative chronic hepatitis B, adefovir dipivoxil administration selects variants bearing reverse transcriptase rtN236T and/or rtA181V/T substitutions in 29% of cases after 5 years. The aim of this study was to characterize the dynamics of adefovir-resistant variant populations during adefovir monotherapy in order to better understand the molecular mechanisms underlying hepatitis B virus resistance to this class of nucleotide analogues. Patients included in a 240-week clinical trial of adefovir monotherapy who developed adefovir resistance-associated substitutions were studied.
View Article and Find Full Text PDFUnlabelled: The quantification of hepatitis C virus (HCV) RNA is essential for the everyday management of chronic hepatitis C therapy. Real-time polymerase chain reaction (PCR) techniques are potentially more sensitive than classical PCR techniques, are not prone to carryover contamination, and have a consistently wider dynamic range of quantification. Thus, they are rapidly replacing other technologies for the routine quantification of HCV RNA.
View Article and Find Full Text PDFThe addition of ribavirin to alpha interferon therapy significantly increases response rates for patients with chronic hepatitis C virus (HCV) infection, but ribavirin's antiviral mechanisms are unknown. Ribavirin has been suggested to have mutagenic potential in vitro that would lead to "error catastrophe," i.e.
View Article and Find Full Text PDFBackground/aims: Some patients receiving adefovir at the approved dose of 10 mg daily for chronic hepatitis B have a "suboptimal" virological response characterized by a slow and moderate decrease in viral replication.
Methods: We assessed the efficacy and safety of adefovir 20 mg daily in patients with hepatitis B e antigen-positive chronic hepatitis B resistant to lamivudine and a suboptimal virological response to adefovir 10 mg daily add-on.
Results: No amino acid substitutions known to confer adefovir resistance were found in these patients.
Background: The nonstructural (NS) 5A protein of hepatitis C virus (HCV) has been suggested to contain an interferon (IFN) sensitivity-determining region (ISDR).
Methods: We studied whether the degree of viral decline on day 1 is associated with differences in NS5A amino acid sequences among patients receiving IFN- alpha.
Results: Phylogenetic analyses of the full-length protein and of functional domains showed no relationship between the baseline protein sequence and the antiviral response.
Chronic hepatitis C is a common cause of liver disease, the complications of which include cirrhosis and hepatocellular carcinoma. Treatment of chronic hepatitis C is based on the use of alpha interferon (IFN-alpha). Recently, indirect evidence based on mathematical modeling of hepatitis C virus (HCV) dynamics during human IFN-alpha therapy suggested that the major initial effect of IFN-alpha is to block HCV virion production or release.
View Article and Find Full Text PDF