Publications by authors named "Rozanov E"

Article Synopsis
  • Solar particle events (SPEs) are bursts of high-energy particles from the sun that can significantly affect the Earth's environment, posing economic risks, especially when the geomagnetic field is weak.
  • Historic extreme SPEs can severely alter atmospheric chemistry, leading to ozone depletion and increased ground-level UV radiation, which can harm both the environment and human health.
  • Modeling suggests that under current geomagnetic conditions, extreme SPEs could elevate NO levels and reduce ozone, while a complete lack of geomagnetic protection could cause widespread ozone damage for years, increasing solar-induced DNA damage rates significantly.
View Article and Find Full Text PDF

Water vapor plays an important role in many aspects of the climate system, by affecting radiation, cloud formation, atmospheric chemistry and dynamics. Even the low stratospheric water vapor content provides an important climate feedback, but current climate models show a substantial moist bias in the lowermost stratosphere. Here we report crucial sensitivity of the atmospheric circulation in the stratosphere and troposphere to the abundance of water vapor in the lowermost stratosphere.

View Article and Find Full Text PDF

Our paper about the impacts of the Laschamps Geomagnetic Excursion 42,000 years ago has provoked considerable scientific and public interest, particularly in the so-called Adams Event associated with the initial transition of the magnetic poles. Although we welcome the opportunity to discuss our new ideas, Hawks’ assertions of misrepresentation are especially disappointing given his limited examination of the material.

View Article and Find Full Text PDF

Our study on the exact timing and the potential climatic, environmental, and evolutionary consequences of the Laschamps Geomagnetic Excursion has generated the hypothesis that geomagnetism represents an unrecognized driver in environmental and evolutionary change. It is important for this hypothesis to be tested with new data, and encouragingly, none of the studies presented by Picin . undermine our model.

View Article and Find Full Text PDF

Geological archives record multiple reversals of Earth's magnetic poles, but the global impacts of these events, if any, remain unclear. Uncertain radiocarbon calibration has limited investigation of the potential effects of the last major magnetic inversion, known as the Laschamps Excursion [41 to 42 thousand years ago (ka)]. We use ancient New Zealand kauri trees () to develop a detailed record of atmospheric radiocarbon levels across the Laschamps Excursion.

View Article and Find Full Text PDF

Atmospheric electric fields (AEFs) are produced by both natural processes and electrical infrastructure and are increasingly recognized to influence and interfere with various organisms and biological processes, including human well-being. Atmospheric electric fields, in particular electromagnetic fields (EMFs), currently attract a lot of scientific attention due to emerging technologies such as 5G and satellite internet. However, a broader retrospective analysis of available data for both natural and artificial AEFs and EMFs is hampered due to a lack of a semantic approach, preventing data sharing and advancing our understanding of its intrinsic links.

View Article and Find Full Text PDF

An accurate quantification of the stratospheric ozone feedback in climate change simulations requires knowledge of the ozone response to increased greenhouse gases. Here, we present an analysis of the ozone layer response to an abrupt quadrupling of CO concentrations in four chemistry-climate models. We show that increased CO levels lead to a decrease in ozone concentrations in the tropical lower stratosphere, and an increase over the high latitudes and throughout the upper stratosphere.

View Article and Find Full Text PDF

In this paper, we present the first results of the ionospheric potential (IP) calculations with the chemistry-climate model (CCM) SOCOL (Solar Climate Ozone Links). For the study, we exploit a parameterization of the difference in electric potential between Earth's surface and lower boundary of the ionosphere as a function of thunderstorm and electrified cloud properties. The model shows a good enough agreement with the IP obtained by balloon soundings.

View Article and Find Full Text PDF

The bremsstrahlung from high and relativistic energy electron precipitation (HEEP) measured with balloon based instruments provides information on energy spectra and fluence of the precipitating energetic electrons allowing calculations of the atmospheric ionization. HEEP from the outer radiation belt at the subauroral region causes an increase in the ionization rates down to about 20 km altitudes. We study the variability in the ionization rate using the balloon observations of secondary bremsstrahlung initiated by HEEP.

View Article and Find Full Text PDF

We have derived values of the Ultraviolet Index (UVI) at solar noon using the Tropospheric Ultraviolet Model (TUV) driven by ozone, temperature and aerosol fields from climate simulations of the first phase of the Chemistry-Climate Model Initiative (CCMI-1). Since clouds remain one of the largest uncertainties in climate projections, we simulated only the clear-sky UVI. We compared the modelled UVI climatologies against present-day climatological values of UVI derived from both satellite data (the OMI-Aura OMUVBd product) and ground-based measurements (from the NDACC network).

View Article and Find Full Text PDF

Climate models consistently predict an acceleration of the Brewer-Dobson circulation (BDC) due to climate change in the 21st century. However, the strength of this acceleration varies considerably among individual models, which constitutes a notable source of uncertainty for future climate projections. To shed more light upon the magnitude of this uncertainty and on its causes, we analyze the stratospheric mean age of air (AoA) of 10 climate projection simulations from the Chemistry Climate Model Initiative phase 1 (CCMI-I), covering the period between 1960 and 2100.

View Article and Find Full Text PDF

Previous multi-model intercomparisons have shown that chemistry-climate models exhibit significant biases in tropospheric ozone compared with observations. We investigate annual-mean tropospheric column ozone in 15 models participating in the SPARC/IGAC (Stratosphere-troposphere Processes and their Role in Climate/International Global Atmospheric Chemistry) Chemistry-Climate Model Initiative (CCMI). These models exhibit a positive bias, on average, of up to 40-50% in the Northern Hemisphere compared with observations derived from the Ozone Monitoring Instrument and Microwave Limb Sounder (OMI/MLS), and a negative bias of up to ~30% in the Southern Hemisphere.

View Article and Find Full Text PDF

Simulated stratospheric temperatures over the period 1979-2016 in models from the Chemistry-Climate Model Initiative (CCMI) are compared with recently updated and extended satellite observations. The multi-model mean global temperature trends over 1979- 2005 are -0.88 ± 0.

View Article and Find Full Text PDF

Major stratospheric sudden warmings (SSWs) are the largest instance of wintertime variability in the Arctic stratosphere. Due to their relevance for the troposphere-stratosphere system, several previous studies have focused on their potential response to anthropogenic forcings. However, a wide range of results have been reported, from a future increase in the frequency of SSWs to a decrease.

View Article and Find Full Text PDF

Formaldehyde (HCHO) directly affects the atmospheric oxidative capacity through its effects on HO. In remote marine environments, such as the Tropical Western Pacific (TWP), it is particularly important to understand the processes controlling the abundance of HCHO because model output from these regions is used to correct satellite retrievals of HCHO. Here, we have used observations from the CONTRAST field campaign, conducted during January and February 2014, to evaluate our understanding of the processes controlling the distribution of HCHO in the TWP as well as its representation in chemical transport/climate models.

View Article and Find Full Text PDF
Article Synopsis
  • The Montreal Protocol has effectively reduced emissions of substances that harm the ozone layer, leading to an expected recovery of stratospheric ozone levels in this century.
  • There is significant uncertainty regarding how quickly ozone levels will recover, particularly in the Northern Hemisphere, where a dipole pattern of ozone anomalies has been identified between Eurasia (decreasing ozone) and North America (increasing ozone).
  • Ozone recovery in late winter may depend not only on the decrease of harmful substances but also on shifts in the polar vortex, potentially causing delays in recovery across certain regions of the Northern Hemisphere.
View Article and Find Full Text PDF

An accurate estimate of global hydroxyl radical (OH) abundance is important for projections of air quality, climate, and stratospheric ozone recovery. As the atmospheric mixing ratios of methyl chloroform (CHCCl) (MCF), the commonly used OH reference gas, approaches zero, it is important to find alternative approaches to infer atmospheric OH abundance and variability. The lack of global bottom-up emission inventories is the primary obstacle in choosing a MCF alternative.

View Article and Find Full Text PDF

Sporadic solar energetic particle (SEP) events affect the Earth's atmosphere and environment, in particular leading to depletion of the protective ozone layer in the Earth's atmosphere, and pose potential technological and even life hazards. The greatest SEP storm known for the last 11 millennia (the Holocene) occurred in 774-775 AD, serving as a likely worst-case scenario being 40-50 times stronger than any directly observed one. Here we present a systematic analysis of the impact such an extreme event can have on the Earth's atmosphere.

View Article and Find Full Text PDF

In the past several decades, the tropospheric westerly winds in the Southern Hemisphere have been observed to accelerate on the poleward side of the surface wind maximum. This has been attributed to the combined anthropogenic effects of increasing greenhouse gases and decreasing stratospheric ozone and is predicted to continue by the Intergovernmental Panel on Climate Change/Fourth Assessment Report (IPCC/AR4) models. In this paper, the predictions of the Chemistry-Climate Model Validation (CCMVal) models are examined: Unlike the AR4 models, the CCMVal models have a fully interactive stratospheric chemistry.

View Article and Find Full Text PDF

The advantages and disadvantages of intravenous and inhalation anesthesias in pediatric anesthesiology are analyzed. Causes of complications induced by myorelaxants and measures for preventing these complications are discussed. Basic protocols of intravenous or inhalation anesthesias with the minimum fresh gas flow for pediatric anesthesiology are presented.

View Article and Find Full Text PDF

The efficiency and safety of low flow inhalation anesthesia for children were evaluated on the basis of oxygen transport parameters. Sixty-seven children aged 3 months to 15 years (mean age 5.7 +/- 2.

View Article and Find Full Text PDF

The adequacy of anesthesia with propofol is evaluated in 48 children aged 3 months to 7 years (ASA I-III) subjected to abdominal and urological interventions. The children were divided into groups administered different general anesthesias: 9 children aged 3-7 years operated under total intravenous anesthesia (TIVA) with propofol and fentanyl and 39 children aged 3 months to 6 years operated under TIVA with propofol, ketamine, and fentanyl. The efficiency of anesthesia was evaluated by electroencephalography and hemodynamic monitoring.

View Article and Find Full Text PDF

The authors report data of an investigation of the vitamin status in 154 patients with ischemic heart disease. A deficit of B1-, B2, PP-, B6 and C vitamins was found in the absolute majority of patients. Multivitamin deficiency was as a rule found.

View Article and Find Full Text PDF