Publications by authors named "Rozalia Pataky"

Preterm birth is the leading risk factor for perinatal white matter injury, which can lead to motor and neuropsychiatric impairment across the life course. There is an unmet clinical need for therapeutics. White matter injury is associated with an altered inflammatory response in the brain, primarily led by microglia, and subsequent hypomyelination.

View Article and Find Full Text PDF

Purpose: Measures of white matter (WM) microstructure inferred from diffusion magnetic resonance imaging (dMRI) are useful for studying brain development. There is uncertainty about agreement between FA and MD values obtained from region-of-interest (ROI) versus whole tract approaches. We investigated agreement between dMRI measures using ROI and Probabilistic Neighbourhood Tractography (PNT) in genu of corpus callosum (gCC) and corticospinal tracts (CST).

View Article and Find Full Text PDF

A latent measure of white matter microstructure (g ) provides a neural basis for information processing speed and intelligence in adults, but the temporal emergence of g during human development is unknown. We provide evidence that substantial variance in white matter microstructure is shared across a range of major tracts in the newborn brain. Based on diffusion MRI scans from 145 neonates [gestational age (GA) at birth range 23-41 weeks], the microstructural properties of eight major white matter tracts were calculated using probabilistic neighborhood tractography.

View Article and Find Full Text PDF

Quantitative volumes from brain magnetic resonance imaging (MRI) acquired across the life course may be useful for investigating long term effects of risk and resilience factors for brain development and healthy aging, and for understanding early life determinants of adult brain structure. Therefore, there is an increasing need for automated segmentation tools that can be applied to images acquired at different life stages. We developed an automatic segmentation method for human brain MRI, where a sliding window approach and a multi-class random forest classifier were applied to high-dimensional feature vectors for accurate segmentation.

View Article and Find Full Text PDF

Preterm infants are susceptible to inflammation-induced white matter injury but the exposures that lead to this are uncertain. Histologic chorioamnionitis (HCA) reflects intrauterine inflammation, can trigger a fetal inflammatory response, and is closely associated with premature birth. In a cohort of 90 preterm infants with detailed placental histology and neonatal brain magnetic resonance imaging (MRI) data at term equivalent age, we used Tract-based Spatial Statistics (TBSS) to perform voxel-wise statistical comparison of fractional anisotropy (FA) data and computational morphometry analysis to compute the volumes of whole brain, tissue compartments and cerebrospinal fluid, to test the hypothesis that HCA is an independent antenatal risk factor for preterm brain injury.

View Article and Find Full Text PDF

Neuroinflammation contributes to developmental brain injury associated with preterm birth, but the mediators that drive it are incompletely understood. Previous studies have shown that complement C5a is present and injurious in the brains of foetal mice exposed to preterm labour. Here, we demonstrate that C5a is present in the cerebrospinal fluid of newborn human infants and that levels are elevated in those born preterm.

View Article and Find Full Text PDF

Neuroimage analysis pipelines rely on parcellated atlases generated from healthy individuals to provide anatomic context to structural and diffusion MRI data. Atlases constructed using adult data introduce bias into studies of early brain development. We aimed to create a neonatal brain atlas of healthy subjects that can be applied to multi-modal MRI data.

View Article and Find Full Text PDF

Accurate whole-brain segmentation, or brain extraction, of magnetic resonance imaging (MRI) is a critical first step in most neuroimage analysis pipelines. The majority of brain extraction algorithms have been developed and evaluated for adult data and their validity for neonatal brain extraction, which presents age-specific challenges for this task, has not been established. We developed a novel method for brain extraction of multi-modal neonatal brain MR images, named ALFA (Accurate Learning with Few Atlases).

View Article and Find Full Text PDF

Background: Preterm birth is closely associated with neurocognitive impairment in childhood including increased risk for social difficulties. Eye tracking objectively assesses eye-gaze behaviour in response to visual stimuli, which permits inference about underlying cognitive processes. We tested the hypothesis that social orienting in infancy is altered by preterm birth.

View Article and Find Full Text PDF

Preterm birth is associated with altered connectivity of neural circuits. We developed a tract segmentation method that provides measures of tract shape and integrity (probabilistic neighborhood tractography, PNT) from diffusion MRI (dMRI) data to test the hypotheses: 1) preterm birth is associated with alterations in tract topology (R), and tract-averaged mean diffusivity (〈D〉) and fractional anisotropy (FA); 2) neural systems are separable based on tract-averaged dMRI parameters; and 3) PNT can detect neuroprotective treatment effects. dMRI data were collected from 87 preterm infants (mean gestational age 29(+1) weeks, range 23(+2) -34(+6)) at term equivalent age and 24 controls (mean gestational age 39(+6) weeks).

View Article and Find Full Text PDF