Publications by authors named "Rozaklis T"

Gaucher disease is a lysosomal storage disorder caused by a deficiency in glucocerebrosidase activity that leads to accumulation of glucosylceramide and glucosylsphingosine. Membrane raft microdomains are discrete, highly organized microdomains with a unique lipid composition that provide the necessary environment for specific protein-lipid and protein-protein interactions to take place. In this study we purified detergent resistant membranes (DRM; membrane rafts) from the occipital cortex and spleen from sheep affected with acute neuronopathic Gaucher disease and wild-type controls.

View Article and Find Full Text PDF

Gaucher disease arises from mutations in the β-glucocerebrosidase gene which encodes an enzyme required for the lysosomal catabolism of glucosylceramide. We have identified a naturally occurring mutation in the β-glucocerebrosidase gene in sheep that leads to Gaucher disease with acute neurological symptoms. Here we have examined the clinical phenotype at birth and subsequently quantified lipids in Gaucher lamb brain, in order to characterise the disorder.

View Article and Find Full Text PDF

Repeated replacement of sulphamidase via cerebrospinal fluid injection is an effective treatment for pathological changes in the brain in mice and dogs with the lysosomal storage disorder, mucopolysaccharidosis type IIIA (MPS IIIA). Investigational trials of this approach are underway in children with this condition, however, infusions require attendance at a specialist medical facility. We sought to comprehensively evaluate the effectiveness of sustained-release (osmotic pump-delivered) enzyme replacement therapy in murine MPS IIIA as this method, if applied to humans, would require only subcutaneous administration of enzyme once the pump was installed.

View Article and Find Full Text PDF

Mucopolysaccharidosis IIIA (MPS IIIA) is a neurodegenerative lysosomal storage disorder characterised by progressive loss of learned skills, sleep disturbance and behavioural problems. Reduced activity of lysosomal sulfamidase results in accumulation of heparan sulfate and secondary storage of glycolipids in the brain. Intra-cisternal sulfamidase infusions reduce disease-related neuropathology; however, repeated injections may subject patients to the risk of infection and tissue damage so alternative approaches are required.

View Article and Find Full Text PDF

Intracerebrospinal fluid (CSF) infusion of replacement enzyme is under evaluation for amelioration of disease-related symptoms and biomarker changes in patients with the lysosomal storage disorder mucopolysaccharidosis type IIIA (MPS IIIA; www.clinicaltrials.gov ; NCT#01155778; #01299727).

View Article and Find Full Text PDF

Injection of lysosomal enzyme into cisternal or ventricular cerebrospinal fluid (CSF) has been carried out in 11 lysosomal storage disorder models, with each study demonstrating reductions in primary substrate and secondary neuropathological changes, and several reports of improved neurological function. Whilst acute studies in mucopolysaccharidosis (MPS) type II mice revealed that intrathecally-delivered enzyme (into thoraco-lumbar CSF) accesses the brain, the impact of longer-term treatment of affected subjects via this route is unknown. This approach is presently being utilized to treat children with MPS types I, II and III.

View Article and Find Full Text PDF

Mucopolysaccharidosis type IIIA (MPS-IIIA) is a severe neurodegenerative lysosomal storage disorder caused by a deficiency of N-sulfoglucosamine sulfohydrolase (SGSH) activity with subsequent accumulation of partially-degraded heparan sulfate and other glycolipids. In this study, we have evaluated a gene therapy approach using a helper-dependent canine adenovirus vector that expresses human SGSH as a means of delivering sustained transgene expression to the brain. Initial testing in a mixed neural cell culture model demonstrated that the vector could significantly increase SGSH activity in transduced cells, resulting in near-normalization of heparan sulfate-derived fragments.

View Article and Find Full Text PDF

Mucopolysaccharidosis type IIIA (MPS IIIA) is a neurodegenerative lysosomal storage disorder that results from a deficiency of sulfamidase (N-sulfoglucosamine sulfohydrolase), with consequential accumulation of its substrate, partially degraded heparan sulfate. Conventional doses (e.g.

View Article and Find Full Text PDF

Mucopolysaccharidosis type IIIA (MPS IIIA) is a neurodegenerative metabolic disorder caused by mutations in the N-sulfoglucosamine sulfohydrolase gene with resultant accumulation of partially degraded heparan sulfate (HS). Whilst allogeneic bone marrow transplantation (BMT) is indicated for several lysosomal storage disorders featuring neurodegeneration, its use in MPS III is highly controversial. Published evidence suggests that BMT does not improve cognitive function in MPS III patients.

View Article and Find Full Text PDF

Mucopolysaccharidosis type IIIA is a neurodegenerative lysosomal storage disorder characterized by progressive loss of learned skills, sleep disturbance and behavioural problems. Absent or greatly reduced activity of sulphamidase, a lysosomal protein, results in intracellular accumulation of heparan sulphate. Subsequent neuroinflammation and neurodegeneration typify this and many other lysosomal storage disorders.

View Article and Find Full Text PDF

Gaucher disease (GD) is an inborn error of glycosphingolipid metabolism resulting from a deficiency of the lysosomal enzyme beta-glucosidase leading to the accumulation of glucosylceramide (GC) in lysosomes of affected cells. In order to determine the effect of GC accumulation on intracellular lipid content in fibroblasts from patients with GD, we measured individual species of ceramide, di- and trihexosylceramide, sphingomyelin, phosphatidylcholine, phosphatidylinositol and phosphatidylglycerol using electrospray ionisation-tandem mass spectrometry. The different subspecies of each lipid class correlated with each other and were summed to give total lipid concentrations.

View Article and Find Full Text PDF

Enzyme replacement therapy has been in clinical practice for the non-neuronopathic form of Gaucher disease for 15 years. However, the wide phenotypic variability in this disorder poses challenges to clinicians to assess patient severity and disease progression in order to effectively manage patients. Once therapy is initiated, methods to monitor the complex biochemical changes associated with the disease, and the response of these changes to therapy, are required in order to tailor therapy regimens to individual patients.

View Article and Find Full Text PDF

Aim: To investigate the nature of a progressive ataxia in a New Zealand Huntaway dog.

Methods: The affected dog was examined clinically before being humanely killed and necropsied. Selected tissues were submitted to light and electron microscopy and to biochemical analyses.

View Article and Find Full Text PDF

Background: Fabry disease is an X-linked lysosomal storage disorder resulting from a deficiency of the lysosomal hydrolase, alpha-galactosidase, for which enzyme replacement therapy is now available. In this study, we aimed to identify Fabry heterozygotes not only for genetic counseling of families but because it is becoming increasingly obvious that many heterozygous (carrier) females are symptomatic and should be considered for treatment.

Methods: We measured 29 individual lipid species, including ceramide, glucosylceramide, lactosylceramide, and ceramide trihexoside, in urine samples from Fabry hemizygotes and heterozygotes and from control individuals by electrospray ionization tandem mass spectrometry.

View Article and Find Full Text PDF

Objective: To evaluate the use of protein markers using immune-quantification assays and of metabolite markers using tandem mass spectrometry for the identification, at birth, of individuals who have a lysosomal storage disorder.

Methods: A retrospective analysis was conducted of Guthrie cards that were collected from newborns in Denmark during the period 1982-1997. Patients whose lysosomal storage disorder (LSD; 47 representing 12 disorders) was diagnosed in Denmark during the period 1982-1997 were selected, and their Guthrie cards were retrieved from storage.

View Article and Find Full Text PDF

Unprecedented demands are now placed on clinicians for early diagnosis as we enter into an era of advancing treatment opportunities for the mucopolysaccharidoses (MPS). Biochemical monitoring of any therapeutic avenue will also be prerequisite. To this end, we aimed to identify a range of urinary oligosaccharides that could be used to identify and characterize patients with MPS.

View Article and Find Full Text PDF

Background: The development of therapies for lysosomal storage disorders has created a need for biochemical markers to monitor the efficacy of therapy and methods to quantify these markers in biologic samples. In Pompe disease, the concentration of a tetrasaccharide, consisting of four glucose residues, is reputedly increased in urine and plasma, but faster and more sensitive methods are required for the analysis of this, and other oligosaccharides, from biologic fluids.

Methods: We optimized the derivatization of storage oligosaccharides with 1-phenyl-3-methyl-5-pyrazolone for the measurement, by electrospray ionization tandem mass spectrometry, of oligosaccharide concentrations in urine (n = 6), plasma (n = 11), and dried-blood spots (n = 17) from Pompe-affected individuals.

View Article and Find Full Text PDF

Mucopolysaccharidosis type III A (MPS III A, Sanfilippo syndrome) is a rare, autosomal recessive, lysosomal storage disease characterized by accumulation of heparan sulfate secondary to defective function of the lysosomal enzyme heparan N- sulfatase (sulfamidase). Here we describe a spontaneous mouse mutant that replicates many of the features found in MPS III A in children. Brain sections revealed neurons with distended lysosomes filled with membranous and floccular materials with some having a classical zebra body morphology.

View Article and Find Full Text PDF

The ability of cells to decorate glycosaminoglycans (GAGs) with sulphate in highly specific patterns is important to extracellular matrix biogenesis and placing appropriate glycosulphated ligands on the cell surface. We have examined sulphate metabolism in two pancreatic duct epithelial cell lines - PANC-1 and CFPAC-1 (derived from a cystic fibrosis patient) with a view to understanding how pancreatic cells utilise intracellular sulphate. [35S]Sulphate uptake was rapid and reached near steady state levels within 10 min.

View Article and Find Full Text PDF

A combination of anion-exchange chromatography and 30-40% gradient polyacrylamide gel electrophoresis (gradient-PAGE) was used to purify and characterize urinary glycosaminoglycans from various mucopolysaccharidoses (MPS). The urinary glycosaminoglycans from the different MPS displayed distinct patterns on gradient-PAGE and further confirmation of MPS types and subtypes was demonstrated by an electrophoretic shift in the banding pattern after digestion with the appropriate MPS enzyme. Thus each of the MPS accumulates a unique spectrum of glycosaminoglycans with a nonreducing terminal consisting of the substrate specific for the deficient enzyme in that particular MPS disorder.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is a fatal inherited disease caused by the loss of function of a plasma membrane chloride channel-the cystic fibrosis transmembrane conductance regulator (CFTR). It is characterized by viscous mucous secretions which have abnormal glycosylation and sulfation. The development of a CFTR knockout mouse has allowed in vivo experiments aimed at investigating the over-sulfation phenomenon reported for CF glycoconjugates.

View Article and Find Full Text PDF

Cystic fibrosis is associated with mutations of the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-regulated plasma membrane chloride channel. Cystic fibrosis patients have been reported to possess elevated sulfation of glycoconjugates, which may contribute to the pathogenesis of the disease. Sulfation of glycosaminoglycans by a cystic fibrosis pancreatic adenocarcinoma cell line homozygous for DeltaF508 (CFPAC-1), a control pancreatic cell line (PANC-1), two CFPAC-1 cell lines transfected with the gene for CFTR (PLJ-CFTR-4.

View Article and Find Full Text PDF

Studies using lysosomal membrane vesicles have suggested that efflux of the sulfate that results from lysosomal glycosaminoglycan degradation is carrier-mediated. In this study, glycosaminoglycan degradation and sulfate efflux were examined using cultured skin fibroblasts and lysosomes deficient in the lysosomal enzyme N-acetylgalactosamine-4-sulfatase. Such fibroblasts store dermatan sulfate lysosomally, which could be labelled biosynthetically with Na2(35)SO4.

View Article and Find Full Text PDF

The glycoconjugate component of cystic fibrosis (CF) epithelial secretions is abnormally sulfated. Previous studies have suggested that some but not all CF fibroblasts express this secondary defect. We tested the hypothesis that the major CF mutation (delta F508/delta F508) is correlated with elevated sulfate transport, by measuring the rates of saturable and nonsaturable [35S]SO4(2-) uptake in skin fibroblasts isolated from CF patients of known genotype.

View Article and Find Full Text PDF