SARS-CoV-2 cellular infection is mediated by the heavily glycosylated spike protein. Recombinant versions of the spike protein and the receptor-binding domain (RBD) are necessary for seropositivity assays and can potentially serve as vaccines against viral infection. RBD plays key roles in the spike protein's structure and function, and thus, comprehensive characterization of recombinant RBD is critically important for biopharmaceutical applications.
View Article and Find Full Text PDFThe unanticipated discovery of recent ultra-high-resolution ion mobility spectrometry (IMS) measurements revealing that isotopomers─compounds that differ only in the isotopic substitution sites─can be separated has raised questions as to the physical basis for their separation. A study comparing IMS separations for two isotopomer sets in conjunction with theory and simulations accounting for ion rotational effects provides the first-ever prediction of rotation-mediated shifts. The simulations produce observable mobility shifts due to differences in gas-ion collision frequency and translational-to-rotational energy transfer.
View Article and Find Full Text PDFAccurate and comprehensive identification of residual glycerides in biodiesel is an important part of fuel characterization due to the impact of glycerides on the fuel physicochemical properties. However, analysis of bound glycerol in biodiesel samples faces challenges due to lack of readily available standards of structurally complex glyceride species in nontraditional biodiesel feedstocks and a risk of misannotation in the presence of impurities in gas chromatographic separations. Here, we evaluate methane and isobutane chemical ionization-single quadrupole mass spectrometry combined with high-temperature gas chromatography separations for mapping monoacylglycerols, diacylglycerols, and triacylglycerols in biodiesel.
View Article and Find Full Text PDFWe report on separations of ion isotopologues and isotopomers using ultrahigh-resolution traveling wave-based Structures for Lossless Ion Manipulations with serpentine ultralong path and extended routing ion mobility spectrometry coupled to mass spectrometry (SLIM SUPER IMS-MS). Mobility separations of ions from the naturally occurring ion isotopic envelopes (e.g.
View Article and Find Full Text PDFA separation voltage polarity switching transient capillary isotachophoresis (PS-tCITP) was developed to overcome a major sample loading volume limitation in transient capillary isotachophoresis (tCITP). The fundamental idea of PS-tCITP is to let sample ions move back and forth in a separation capillary during their initial isotachophoresis focusing stage by switching the polarity of the separation voltage, in order to both increase the sample loading volume and improve the separation efficiency as compared to the conventional tCITP method. The experimental evaluation of the novel PS-tCITP method by using two peptide standards at 2 μM concentration showed that the maximum sample loading volume could be increased from 45% of the total separation capillary volume in tCITP to 70% in PS-tCITP, which resulted in a more than 1.
View Article and Find Full Text PDFIon mobility spectrometry (IMS) is a widely used analytical technique for rapid molecular separations in the gas phase. Though IMS alone is useful, its coupling with mass spectrometry (MS) and front-end separations is extremely beneficial for increasing measurement sensitivity, peak capacity of complex mixtures, and the scope of molecular information available from biological and environmental sample analyses. In fact, multiple disease screening and environmental evaluations have illustrated that the IMS-based multidimensional separations extract information that cannot be acquired with each technique individually.
View Article and Find Full Text PDFComplex samples benefit from multidimensional measurements where higher resolution enables more complete characterization of biological and environmental systems. To address this challenge, we developed a drift tube-based ion mobility spectrometry-Orbitrap mass spectrometer (IMS-Orbitrap MS) platform. To circumvent the time scale disparity between the fast IMS separation and the much slower Orbitrap MS acquisition, we utilized a dual gate and pseudorandom sequences to multiplex the injection of ions and allow operation in signal averaging (SA), single multiplexing (SM), and double multiplexing (DM) IMS modes to optimize the signal-to-noise ratio of the measurements.
View Article and Find Full Text PDFUnderstanding the biological roles and mechanisms of lipids and glycolipids is challenging due to the vast number of possible isomers that may exist. Mass spectrometry (MS) measurements are currently the dominant approach for studying and providing detailed information on lipid and glycolipid presence and changes. However, difficulties in distinguishing the many structural isomers, due to the distinct lipid acyl chain positions, double bond locations or specific glycan types, inhibit the delineation and assignment of their biological roles.
View Article and Find Full Text PDFCapillary zone electrophoresis (CZE) is emerging as a useful tool in proteomic analysis. Interest arises from dramatic improvements in performance that result from improvements in the background electrolyte used for the separation, the incorporation of advanced sample injection methods, the development of robust and sensitive electrospray interfaces, and the coupling with Orbitrap mass spectrometers with high resolution and sensitivity. The combination of these technologies produces performance that is rapidly approaching the performance of UPLC-based methods for microgram samples and exceeds the performance of UPLC-based methods for mid- to low nanogram samples.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
June 2015
While capillary zone electrophoresis (CZE) has been used to produce very rapid and efficient separations, coupling these high-speed separations with mass spectrometry (MS) has been challenging. Now, with much faster and sensitive mass spectrometers, it is possible to take full advantage of the CZE speed and reconstruct the fast migrating peaks. Here are three high-speed CZE-MS analyses via an electrokinetically pumped sheath-flow interface.
View Article and Find Full Text PDFAutomated diagonal capillary electrophoresis is a two-dimensional separation method that incorporates an immobilized enzyme reactor at the distal end of the first capillary and employs identical electrophoretic separation modes in both dimensions. Components undergo a preliminary separation in the first capillary. Fractions are parked in the reactor where some components undergo transformation.
View Article and Find Full Text PDFCapillary zone electrophoresis-multiple/single reaction monitoring (CZE-MRM/SRM), which employed an electrokinetically driven sheath-flow electrospray interface, was used for the rapid and highly sensitive detection of protein analytes in complex tryptic digests. MRM channels were developed against a commercial exponential mixture of bovine proteins. Five proteins spanning four orders of magnitude concentration range were confidently detected from only 2.
View Article and Find Full Text PDFA rapid and reproducible system that couples capillary isoelectric focusing to a high-resolution mass spectrometer was developed for on-line analysis and identification of protein digests. Magnetic microsphere-based immobilized trypsin was used for protein digestion to reduce the digestion time to 10 min, with a total analysis time of 4h. A three-protein-mixture (myoglobin, BSA, cytochrome c) with a molarity ratio of 1:10:50 was successfully digested and identified.
View Article and Find Full Text PDFWe report the performance of capillary zone electrophoresis coupled with an electrokinetically pumped electrospray interface and an Orbitrap-Velos mass spectrometer for high sensitivity protein analysis. We first investigated the system for quantitation of the tryptic digest of BSA. The system produced outstanding linearity with respect to peak height, number of peptide IDs, and spectral counts across the range of 12 nM to 750 nM (60 amol to 3.
View Article and Find Full Text PDFWe demonstrate the use of capillary zone electrophoresis with an electrokinetic sheath-flow electrospray interface coupled to a triple-quadrupole mass spectrometer for the accurate and precise quantification of Leu-enkephalin in a complex mixture using multiple-reaction monitoring (MRM). Assay time is <6 min, with no re-equilibration required between runs. A standard curve of Leu-enkephalin was performed in the presence of a background tryptic digest of bovine albumin.
View Article and Find Full Text PDFCapillary electrophoresis can provide fast and efficient separations of peptides. However, the high speed separation and limited loading capacity of capillary electrophoresis requires the use of a fast and sensitive detector. While laser-induced fluorescence provides exquisite sensitivity and millisecond response time, it inherently generates a low information content signal.
View Article and Find Full Text PDFWe demonstrate the use of capillary zone electrophoresis with an electrokinetically pumped sheath-flow electrospray interface for the analysis of a tryptic digest of a sample of intermediate protein complexity, the secreted protein fraction of Mycobacterium marinum. For electrophoretic analysis, 11 fractions were generated from the sample using reverse-phase liquid chromatography; each fraction was analyzed by CZE-ESI-MS/MS, and 334 peptides corresponding to 140 proteins were identified in 165 min of mass spectrometer time at 95% confidence (FDR < 0.15%).
View Article and Find Full Text PDFWe describe a two-dimensional capillary electrophoresis system that incorporates a replaceable enzymatic microreactor for on-line protein digestion. In this system, trypsin is immobilized on magnetic beads. At the start of each experiment, old beads are flushed to waste and replaced with a fresh plug of beads, which is captured by a pair of magnets at the distal tip of the first capillary.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
September 2010
We report a simple nanospray sheath-flow interface for capillary electrophoresis. This interface relies on electrokinetic flow to drive both the separation and the electrospray; no mechanical pump is used for the sheath flow. This system was interfaced with an LCQ mass spectrometer.
View Article and Find Full Text PDFDiagonal capillary electrophoresis is a form of two-dimensional capillary electrophoresis that employs identical separation modes in each dimension. The distal end of the first capillary incorporates an enzyme-based microreactor. Analytes that are not modified by the reactor will have identical migration times in the two capillaries and will generate spots that fall on the diagonal in a reconstructed two-dimensional electropherogram.
View Article and Find Full Text PDFThe spectroscopic and electrophoretic properties of proteins labeled with Chromeo P503 were investigated. Its photobleaching characteristics were determined by continually infusing Chromeo P503-labeled alpha-lactalbumin into a sheath-flow cuvette and monitored fluorescence as a function of laser power. The labeled protein is relatively photo-labile with an optimum excitation power of about 2 mW.
View Article and Find Full Text PDFThe fluorogenic reagent Chromeo P465 is considered for the analysis of proteins by capillary electrophoresis with laser-induced fluorescence detection. The reagent was first used to label alpha-lactalbumin; the product was analyzed by capillary zone electrophoresis in a sub-micellar sodium dodecyl sulfate (SDS) buffer. The product generated a set of equally spaced but poorly resolved peaks that formed a broad envelope with a net mobility of 4 x 10(-4)cm(2) V(-1) s(-1).
View Article and Find Full Text PDF3-(2-Furoyl)quinoline-2-carboxaldehyde (FQ), Chromeo P465, and Chromeo P503 are weakly fluorescent reagents that react with primary amines to produce fluorescent products. We studied the reaction of these reagents with alpha-lactalbumin by mass spectrometry. The reaction generated a set of products by the addition of one or more labels to the protein.
View Article and Find Full Text PDF