Horizontal gene transfer via plasmids plays a pivotal role in microbial evolution. The forces that shape plasmidomes functionality and distribution in natural environments are insufficiently understood. Here, we present a comparative study of plasmidomes across adjacent microbial environments present in different individual rumen microbiomes.
View Article and Find Full Text PDFMotivation: We present Faucet, a two-pass streaming algorithm for assembly graph construction. Faucet builds an assembly graph incrementally as each read is processed. Thus, reads need not be stored locally, as they can be processed while downloading data and then discarded.
View Article and Find Full Text PDFMotivation: Plasmids and other mobile elements are central contributors to microbial evolution and genome innovation. Recently, they have been found to have important roles in antibiotic resistance and in affecting production of metabolites used in industrial and agricultural applications. However, their characterization through deep sequencing remains challenging, in spite of rapid drops in cost and throughput increases for sequencing.
View Article and Find Full Text PDFBackground: Data from large Next Generation Sequencing (NGS) experiments present challenges both in terms of costs associated with storage and in time required for file transfer. It is sometimes possible to store only a summary relevant to particular applications, but generally it is desirable to keep all information needed to revisit experimental results in the future. Thus, the need for efficient lossless compression methods for NGS reads arises.
View Article and Find Full Text PDFBMC Bioinformatics
April 2012
Background: RNA-Seq is a technique that uses Next Generation Sequencing to identify transcripts and estimate transcription levels. When applying this technique for quantification, one must contend with reads that align to multiple positions in the genome (multireads). Previous efforts to resolve multireads have shown that RNA-Seq expression estimation can be improved using probabilistic allocation of reads to genes.
View Article and Find Full Text PDFThe generation of reprogrammed induced pluripotent stem cells (iPSCs) from patients with defined genetic disorders holds the promise of increased understanding of the aetiologies of complex diseases and may also facilitate the development of novel therapeutic interventions. We have generated iPSCs from patients with LEOPARD syndrome (an acronym formed from its main features; that is, lentigines, electrocardiographic abnormalities, ocular hypertelorism, pulmonary valve stenosis, abnormal genitalia, retardation of growth and deafness), an autosomal-dominant developmental disorder belonging to a relatively prevalent class of inherited RAS-mitogen-activated protein kinase signalling diseases, which also includes Noonan syndrome, with pleomorphic effects on several tissues and organ systems. The patient-derived cells have a mutation in the PTPN11 gene, which encodes the SHP2 phosphatase.
View Article and Find Full Text PDFMolecular regulation of embryonic stem cell (ESC) fate involves a coordinated interaction between epigenetic, transcriptional and translational mechanisms. It is unclear how these different molecular regulatory mechanisms interact to regulate changes in stem cell fate. Here we present a dynamic systems-level study of cell fate change in murine ESCs following a well-defined perturbation.
View Article and Find Full Text PDF